Rút gọn biểu thức sau: \(\left(\dfrac{7}{2^9}-\dfrac{14}{2^{11}}+\dfrac{21}{768}\right)^2:\left(\dfrac{5}{2^9}-\dfrac{20}{2^{12}}+\dfrac{25}{1280}\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\dfrac{\left|x-3\right|}{\left(x-3\right)\left(x+3\right)}\left(x+3\right)^2=\dfrac{\left|x-3\right|\left(x+3\right)}{x-3}\left(x\ne\pm3\right)\)
Với \(x>3\Leftrightarrow E=x+3\)
Với \(x< 3\Leftrightarrow E=-x-3\)
\(F=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\left(x\ge0;x\ne25\right)\\ F=\dfrac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
G=\(\dfrac{\left(-2\right)}{3}+\dfrac{\left(-5\right)}{7}+\dfrac{2}{3}+\dfrac{\left(-2\right)}{7}\)
\(\Rightarrow G=\dfrac{\left(-2\right)}{3}+\dfrac{2}{3}+\dfrac{\left(-5\right)}{7}+\dfrac{\left(-2\right)}{7}\)
\(\Rightarrow G=\dfrac{\left(-2\right)+2}{3}+\dfrac{\left(-5\right)+\left(-2\right)}{7}\)
\(\Rightarrow G=0+\dfrac{-7}{7}\)
\(\Rightarrow G=-1\)
\(H=\dfrac{\left(-5\right)}{7}\cdot\dfrac{2}{11}+\dfrac{\left(-5\right)}{7}\cdot\dfrac{9}{11}\)
\(\Rightarrow H=\dfrac{\left(-5\right)}{7}\cdot\left(\dfrac{2}{11}+\dfrac{9}{11}\right)\)\(\Rightarrow H=\dfrac{\left(-5\right)}{7}\cdot\left(\dfrac{2+9}{11}\right)\)
\(\Rightarrow H=\dfrac{\left(-5\right)}{7}\cdot1\)
\(\Rightarrow H=\dfrac{-5}{7}\)
a)\(\left|-0.75\right|+\dfrac{1}{4}-2\dfrac{1}{2}\)
=0.75+0.25-2.5
=1-2.5=-1.5
b)\(15.\dfrac{1}{5}:\left(\dfrac{-5}{7}\right)-2\dfrac{1}{5}.\left(\dfrac{-7}{5}\right)\)
=3.(-1.4)+3.08
=-4.2+3.08=-1.12
c)\(\dfrac{5}{17}+\dfrac{2}{3}-\dfrac{20}{12}+\dfrac{7}{9}+\dfrac{12}{17}\)
=\(\dfrac{49}{51}-\dfrac{5}{3}+\dfrac{7}{9}+\dfrac{12}{17}\)
=\(\dfrac{-12}{17}+\dfrac{7}{9}+\dfrac{12}{17}\)
=\(\dfrac{11}{153}+\dfrac{12}{17}\)
=\(\dfrac{7}{9}\)
d)\(\dfrac{5}{15}+\dfrac{14}{25}-\dfrac{12}{9}+\dfrac{2}{7}+\dfrac{11}{25}\)
=\(\dfrac{67}{75}-\dfrac{4}{3}+\dfrac{2}{7}+\dfrac{11}{25}\)
=-0.44+\(\dfrac{127}{175}\)
=\(\dfrac{2}{7}\)
d) Ta có: \(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)
\(=\dfrac{5\sqrt{x}-6-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-9+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{5\sqrt{x}-6-2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-3}\)
\(=\dfrac{3\sqrt{x}}{x-3}\)
f) Ta có: \(\left(\dfrac{3}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)
\(=\dfrac{3+\sqrt{1-x^2}}{\sqrt{1+x}}:\dfrac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}\)
\(=\dfrac{\sqrt{1-x^2}}{\sqrt{1+x}}=\sqrt{1-x}\)
a: \(=\dfrac{3}{4}-\dfrac{5}{6}+\dfrac{3}{2}=\dfrac{9-10+18}{12}=\dfrac{17}{12}\)
b: \(=\left(\dfrac{1}{9}+\dfrac{6}{9}\right)^2-\dfrac{1}{3}=\dfrac{49}{81}-\dfrac{27}{81}=\dfrac{22}{81}\)
c; \(=\dfrac{5}{11}\left(-\dfrac{3}{7}-\dfrac{5}{7}\right)+\dfrac{-8}{7}\cdot\dfrac{6}{11}=\dfrac{-8}{7}\left(\dfrac{5}{11}+\dfrac{6}{11}\right)=-\dfrac{8}{7}\)
d: \(=\dfrac{2^{26}}{2^{15}\cdot2^{12}}=\dfrac{1}{2}\)
=\(\dfrac{\left(\dfrac{7}{2^9}-\dfrac{14}{2^{11}}+\dfrac{21}{768}\right)^2}{\left(\dfrac{5}{2^9}-\dfrac{20}{2^{12}}+\dfrac{25}{1280}\right)^2}\)
= \(\dfrac{\left[7.\left(\dfrac{1}{2^9}-\dfrac{2}{2^{11}}+\dfrac{3}{768}\right)\right]^2}{\left[5.\left(\dfrac{1}{2^9}-\dfrac{4}{2^{12}}+\dfrac{5}{1280}\right)\right]^2}\)
=\(\dfrac{7^2}{5^2}\)