CM rằng với mọi n ∈ N, n>1 thì n4+4 là hợp số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n = 1 thì n(n+1) = 2 là số nguyên tố, với n ≥2 thì n(n+1) là hợp số.
Với n = 1 thì 3 n 5 = 3 là số nguyên tố, với n ≥2 thì 3 n 5 là hợp số.
Với n = 1 thì n 4 + 4 = 5 là số nguyên tố, với n ≥2 thì n 4 + 4 là hợp số
Lời giải:
$n^4+3n^3+4n^2+3n+1=(n+1)^2(n^2+n+1)$
Nếu đây là scp thì $n^2+n+1$ cũng phải là scp
Đặt $n^2+n+1=t^2$ với $t$ tự nhiên
$\Leftrightarrow 4n^2+4n+4=(2t)^2$
$\Leftrightarrow (2n+1)^2+3=(2t)^2$
$\Leftrightarrow 3=(2t-2n-1)(2t+2n+1)$
$\Rightarrow 2t+2n+1=3; 2t-2n-1=1$
$\Rightarrow n=0$ (trái giả thiết)
Vậy có nghĩa là $n^2+n+1$ không là scp với mọi $n\in\mathbb{N}^*$
$\Rightarrow n^4+3n^3+4n^2+3n+1$ không là scp với mọi $n\in\mathbb{N}^*$
Ta có đpcm.
Theo bài ra, ta có:
n3 + n + 2
= n(n2 + n) + 2.
+ Nếu n lẻ => n2 lẻ => n2 + n chẵn => n2 + n chia hết cho 2 => n(n2 + n) chia hết cho 2 => n(n2 + n) + 2 chia hết cho 2
Mà n(n2 + 2) + 2 lớn hơn 2 => n(n2 +n) + 2 là hợp số hay n3 + n + 2 là hợp số.
+ Nếu n chẵn => n chia hết cho 2 => n(n2 + n) chia hết cho 2 => n(n2 + n) + 2 chia hết cho 2.
Mà n(n2 + n) + 2 lớn hớn 2 => n(n2 + n) + 2 là hợp số hay n3 + n + 2 là hợp số.
Vậy n3 + n + 2 là hợp số với moi n thuộc N*
Cậu trên giải sai rồi, n3 +n + 2= n( n2 +1) +2 chứ sao bằng giống bạn trên được, nếu giống bạn trên thì n( n2 +n) +2 = n3 + n2 +2 rồi
111...12111...1 = (111...1000...0 + 111...1) chia hết cho 111...1 nên 111...12111...1 là hợp số
Theo bài ra , ta có :
111...12111...1 nếu số chữ số 1 ở cả 2 bên như nhau thì nó là hợp số vì ( gọi số chữ số 1 là n ) :
111...12111...1 (n chữ số \(\frac{1}{n}\) chữ số 1 ) = 111...1000...0 ( n chữ số \(\frac{1}{n+1}\) chữ số 0 ) + 111...1 ( n chữ số 1 )
Vì tổng trên có 2 số hạng trên đều chia hết cho 111...1 ( n chữ số 1 ) nên số 111...12111...1 ( n chữ số\(\frac{1}{n}\)chữ số 1 ) chia hết cho 111...1 ( n chữ số 1 ) và nó lớn hơn 111...1 (n chữ số 1) nên nó là hợp số.
Vậy có đpcm
Chúc bạn học tốt =))
Lời giải:
Ta có:
\(n^4+4=(n^2)^2+2^2=(n^2)^2+2^2+2.2.n^2-2.2.n^2\)
\(=(n^2+2)^2-(2n)^2\)
\((n^2+2-2n)(n^2+2+2n)\)
Với \(n\in \mathbb{N}; n>1\) thì \(n^2+2-2n; n^2+2+2n>1\)
Do đó \(n^4+4=(n^2+2-2n)(n^2+2+2n)\) là hợp số
Ta có đpcm.