thực hiện phép tính
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Co quy luat nay ne em: 1+2=3=2.3:2; 1+2+3=6=3.4:2;...;1+2+3+...+2012=2012.2013:2
Suy ra ta co:
Mau so cua D=1 + 1/(2.3:2) + 1/(3.4:2) + 1/(4.5:2) + .... + 1/(2012.2013:2)
=1 + 2/2.3 + 2/3.4 + 2/4.5 + .... + 2/2012.2013
= 2.[1/2 + 1/2.3 + 1/3.4 + 1/4.5 + .... + 1/2012.2013]
=2.[1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ..... + 1/2012.2013]
=2.[1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +....+1/2012 - 1/2013
=2[1 - 1/2013]
=2.2012/2013
Vay D= 2.2012 / (2.2012:2013)=2013
hỗn số thì tử phải lớn hơn mẫu thì chia tử với mẫu thì mới ra hỗn số
Sai đâu bỏ qua nhé, hơi to mới lại mk tính máy tính ra : \(\frac{77}{30}\)nên ko chắc nhé
\(2+\frac{1}{1+\frac{1}{1+\frac{1}{3+\frac{1}{4}}}}=2+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{13}{4}}}}\)
\(=2+\frac{1}{1+\frac{1}{1+\frac{4}{13}}}=2+\frac{1}{1+\frac{1}{\frac{17}{3}}}\)
\(=2+\frac{1}{1+\frac{3}{17}}=2+\frac{1}{\frac{20}{17}}=2+\frac{17}{20}=\frac{57}{20}\)
Đặt \(A=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.......+\frac{2}{2015}+\frac{1}{2016}\)
\(=\frac{2015}{2}+1+\frac{2014}{3}+1+...........+\frac{1}{2015}+1\)
\(=\frac{2017}{2}+\frac{2017}{3}+.........+\frac{2017}{2015}+\frac{2017}{2016}\)
\(=2017.\left(\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2015}+\frac{1}{2016}\right)\)
Thay A vào biểu thức ta dc
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2017}}{A}\)
\(=\frac{\frac{1}{2017}}{2017}\)\(=1\)
CÓ THỂ LÀ SAI NÊN BẠ THÔNG CẢM CHO MK
1) tự làm (thực hiện từ dưới lên)
2) B = \(\frac{\left(\frac{1}{2}\right)^{10}.5-\left(\frac{1}{4}\right)^5.3}{\frac{\frac{1}{1024}.1}{3}-\left(\frac{1}{2}\right)^{11}}\)
= \(\frac{\left(\frac{1}{2}\right)^{10}.5-\left(\frac{1}{2}\right)^{10}.3}{\left(\frac{1}{2}\right)^{10}.\frac{1}{3}-\left(\frac{1}{2}\right)^{10}.\frac{1}{2}}\)
= \(\frac{\left(\frac{1}{2}\right)^{10}.\left(5-3\right)}{\left(\frac{1}{2}\right)^{10}.\left(\frac{1}{3}-\frac{1}{2}\right)}\)
= \(\frac{2}{-\frac{1}{6}}\)= 2 . (-6) = -12
1) \(5+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}=5+\frac{15}{7}=\frac{5}{1}+\frac{15}{7}=\frac{50}{7}\)
\(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+......+\dfrac{1}{1+2+......+50}\)
\(=\dfrac{1}{\dfrac{2.3}{2}}+\dfrac{1}{\dfrac{3.4}{2}}+\dfrac{1}{\dfrac{4.5}{2}}+......+\dfrac{1}{\dfrac{50.51}{2}}\)
\(=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+........+\dfrac{2}{50.51}\)
\(=2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+......+\dfrac{1}{99.100}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\)
\(=2.\dfrac{49}{100}\)
\(=\dfrac{49}{50}\)
Xét thừa số tổng quát: \(1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\)
Suy ra: \(\dfrac{1}{1+2+3+...+n}=\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=\dfrac{2}{n\left(n+1\right)}\)
Dễ r:v