\(\dfrac{x-97}{125}+\dfrac{x-63}{35}=\dfrac{x-7}{21}+\dfrac{x-77}{49}=12\)
giải PT
gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
<=> \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-6\cdot5\)
<=> \(25x+10-80x+10=24x+12-30\)
<=> \(25x-80x-24x=12-30-10-10\)
<=> \(-79x=-38\)
<=> \(x=\dfrac{-38}{-79}\)
\(x=\dfrac{38}{79}\)
b. \(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
<=> \(30\cdot x-6\left(2x-5\right)+5\left(x+8\right)=30\cdot7+10\left(x-1\right)\)
<=> \(30x-12x+30+5x+40=210+10x-10\)
<=> \(30x-12x+5x-10x=210-10-30-40\)
<=> \(13x=130\)
<=> \(x=\dfrac{130}{13}\)
\(x=10\)
c. \(\dfrac{x+1}{15}+\dfrac{x+2}{7}+\dfrac{x+4}{4}+6=0\)
<=> \(28\left(x+1\right)+60\left(x+2\right)+105\left(x+4\right)+420\cdot6=0\)
<=> \(28x+28+60x+120+105x+420+2520=0\)
<=> \(28x+60x+105x=-28-120-420-2520\)
<=> \(193x=-3088\)
<=> \(x=\dfrac{-3088}{193}\)
\(x=-16\)
d. \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
<=> \(6783\left(x-342\right)+5985\left(x-323\right)+5355\left(x-300\right)+4845\left(x-273\right)=101745\cdot10\)
<=> \(6783x-2319786+5985x-1933155+5355x-1606500+4845x-1322685=1017450\)
<=> \(6783x+5985x+5355x+4845x=1017450+2319786+1933155+1606500+1322685\)
<=> \(22968x=8199576\)
<=> \(x=\dfrac{8199576}{22968}\)
\(x=357\)
em ko thể giúp anh được vì em mới học lớp 5 thôi nhaaaaaaaaaaaaa cho em xin lỗi nhaaaaaaaaaaaaaa
Pt\(\Leftrightarrow\dfrac{x+98}{2}+1+\dfrac{x+96}{4}+1+\dfrac{x+65}{35}+1=\dfrac{x+3}{97}+1+\dfrac{x+5}{95}+1+\dfrac{x+49}{51}+1\)
\(\Leftrightarrow\dfrac{x+100}{2}+\dfrac{x+100}{4}+\dfrac{x+100}{35}-\dfrac{x+100}{97}-\dfrac{x+100}{95}-\dfrac{x+100}{51}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{35}-\dfrac{1}{97}-\dfrac{1}{35}-\dfrac{1}{51}\right)=0\)
\(\Leftrightarrow x+100=0\Leftrightarrow x=-100\)
Vậy...
c) \(8x^3-1=8x^2+4x+2\)
<=> \(\left(2x-3\right)\left(4x^2+2x+1\right)=0\)
<=> \(2x-3=0\) hoặc \(4x^2+2x+1=0\)
Th1: x=\(\dfrac{3}{2}\)
Th2: Vô nghiệm
Vậy x=\(\dfrac{3}{2}\)
\(\text{a) }\dfrac{2x^2-x-1}{2}-3x^2+x+4=\left(5-x\right)\left(2x+4\right)\\ \Leftrightarrow\left(\dfrac{2x^2-x-1}{2}-3x^2+x+4\right)2=\left(5-x\right)\left(2x+4\right)2\\ \Leftrightarrow2x^2-x-1-6x^2+2x+8=\left(5-x\right)\left(4x+8\right)\\ \Leftrightarrow-4x^2+x+7=20x+40-4x^2-8x\\ \Leftrightarrow-4x^2+x+4x^2-12x=40-7\\ \Leftrightarrow-11x=33\\ \Leftrightarrow x=-3\\ \text{Vậy }S=\left\{-3\right\}\)
\(\text{b) }\dfrac{\left(2x-5\right)\left(3x+7\right)}{4}+2x-1=\dfrac{\left(x-1\right)\left(2x+4\right)}{2}+1\\ \Leftrightarrow\dfrac{\left(2x-5\right)\left(3x+7\right)}{4}+2x-1=\left(x-1\right)\left(x+2\right)+1\\ \Leftrightarrow\left(\dfrac{\left(2x-5\right)\left(3x+7\right)}{4}+2x-1\right)4=\left(x^2-x+2x-2+1\right)4\\ \Leftrightarrow\left(2x-5\right)\left(3x+7\right)+8x-4=\left(x^2+x-1\right)4\\ \Leftrightarrow6x^2-15x+14x-35+8x-4=4x^2+4x-4\\ \Leftrightarrow6x^2+7x-39=4x^2+4x-4\\ \Leftrightarrow6x^2+7x-4x^2-4x-39+4=0\\ \Leftrightarrow2x^2+3x-35=0\\ \Leftrightarrow2x^2+10x-7x-35=0\\ \Leftrightarrow\left(2x^2+10x\right)-\left(7x+35\right)=0\\ \Leftrightarrow2x\left(x+5\right)-7\left(x+5\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-5\end{matrix}\right.\\ \\ \text{Vậy }S=\left\{\dfrac{7}{2};-5\right\}\)
\(\text{c) }8x^3-1=8x^2+4x+2\\ \Leftrightarrow\left(2x-1\right)\left(4x^2+2x+1\right)=2\left(4x^2+2x+1\right)\\ \Leftrightarrow2x-1=2\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\\ \text{Vậy }S=\left\{\dfrac{3}{2}\right\}\)
\(\text{d) }\left(x^2+x+1\right)\left(x^2-x+1\right)=x^6-1\\ \Leftrightarrow\left(x^3+1\right)\left(x^3-1\right)=\left(x^2+x+1\right)\left(x^2-x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x^2-x+1\right)=\left(x^2+x+1\right)\left(x^2-x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(x-1\right)=1\\ \Leftrightarrow x^2-1=1\\ \Leftrightarrow x^2=2\\ \Leftrightarrow x=\sqrt{2}\\ \text{Vậy }S=\left\{\sqrt{2}\right\}\)
\(\text{e) }\left(x^3+2x\right)\left(x^2+4\right)=\left(x^2+6x^2+8\right)\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left(x^2+2x^2+4x^2+8\right)\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left[\left(x^2+2x^2\right)+\left(4x^2+8\right)\right]\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left[x^2\left(x^2+2\right)+4\left(x^2+2\right)\right]\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left(x^2+4\right)\left(x^2+2\right)\left(3-2x\right)\\ \Leftrightarrow x=3-2x\\ \Leftrightarrow3x=3\\ \Leftrightarrow x=1\\ \text{Vậy }S=\left\{1\right\}\)
f) Kiểm tra lại hạng tử thứ 2 ở vế phải.
\(\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}=\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}\)
\(< =>\dfrac{x+1}{59}+1+\dfrac{x+3}{57}+1+\dfrac{x+5}{55}+1=\dfrac{x+7}{53}+1+\dfrac{x+9}{51}+1+\dfrac{x+11}{49}+1\)
\(< =>\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}=\dfrac{x+60}{53}+\dfrac{x+60}{51}+\dfrac{x+60}{49}\)
\(< =>\left(x+60\right)\left(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\right)=0\\ < =>x+60=0\\ < =>x=-60\)
Ta có : \(\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}=\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}\)
\(\Leftrightarrow\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}+3\text{=}\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}+3\)
\(\Leftrightarrow\left(\dfrac{x+1}{59}+1\right)+\left(\dfrac{x+3}{57}+1\right)+\left(\dfrac{x+5}{55}+1\right)\text{=}\left(\dfrac{x+7}{53}+1\right)+\left(\dfrac{x+9}{51}+1\right)+\left(\dfrac{x+11}{49}+1\right)\)
\(\Leftrightarrow\left(\dfrac{x+1}{59}+1\right)+\left(\dfrac{x+3}{57}+1\right)+\left(\dfrac{x+5}{55}+1\right)\text{=}\left(\dfrac{x+7}{53}+1\right)+\left(\dfrac{x+9}{51}+1\right)+\left(\dfrac{x+11}{49}+1\right)\)
\(\Leftrightarrow\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}\text{=}\dfrac{x+60}{53}+\dfrac{x+60}{51}+\dfrac{x+60}{49}\)
\(\Leftrightarrow\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}-\dfrac{x+60}{53}-\dfrac{x+60}{51}-\dfrac{x-60}{49}\text{=}0\)
\(\Leftrightarrow\left(x+60\right)\left(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\right)\text{=}0\)
\(Do\) \(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\ne0\)
\(\Leftrightarrow\left(x+60\right)\text{=}0\)
\(x\text{=}-60\)
\(Vậy...\)
a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
=>x=3 hoặc x=-10/7
b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)
\(\Leftrightarrow x^2-12x-51+13x+39=0\)
\(\Leftrightarrow x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=-4
Giải:
\(\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
\(\dfrac{4}{3.5}+\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{19.21}=\dfrac{x}{49}\)
\(2.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{19.21}\right)=\dfrac{x}{49}\)
\(2.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)=\dfrac{x}{49}\)
\(2.\left(\dfrac{1}{3}-\dfrac{1}{21}\right)=\dfrac{x}{49}\)
\(2.\dfrac{2}{7}=\dfrac{x}{49}\)
\(\dfrac{4}{7}=\dfrac{x}{49}\)
\(\Rightarrow x=\dfrac{4.49}{7}=28\)
Chúc bạn học tốt!
\(\dfrac{4}{15}+\dfrac{4}{35}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
2 . \(\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{399}=\dfrac{x}{49}\)
2 . \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{19.21}=\dfrac{x}{49}\)
2 . ( \(\dfrac{1}{3}-\dfrac{1}{21}\) ) = \(\dfrac{x}{49}\)
2 . \(\dfrac{2}{7}\) = \(\dfrac{x}{49}\)
=> \(\dfrac{4}{7}=\dfrac{x}{49}\)
=> \(\dfrac{21}{49}=\dfrac{x}{49}\)
=> \(x=21\)
Vậy \(x=21\)
Ta có : \(\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
\(\Leftrightarrow2\cdot\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{19.21}\right)=\dfrac{x}{49}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{21}=\dfrac{x}{98}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{21}=\dfrac{x}{98}\)
\(\Leftrightarrow\dfrac{2}{7}=\dfrac{x}{98}\Rightarrow x=28\)
Vậy $x=28$
a ) \(\dfrac{x+1}{100}+\dfrac{x+2}{99}+\dfrac{x+4}{97}=-4\)
\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}+\dfrac{x+101}{97}=-1\)
\(\Leftrightarrow\left(x+101\right)\left(\dfrac{1}{100}+\dfrac{1}{99}+\dfrac{1}{97}\right)=-1\)
Vô lí => Phương trình trên vô nghiệm .
b ) \(\dfrac{x-12}{77}+\dfrac{x-11}{78}=\dfrac{x-74}{15}+\dfrac{x-73}{16}\)
\(\Leftrightarrow\dfrac{x-89}{77}+\dfrac{x-89}{78}-\dfrac{x-89}{15}-\dfrac{x-73}{16}=0\)
\(\Leftrightarrow\left(x-89\right)\left(\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}\right)=0\)
\(\Leftrightarrow x=89\)
Vậy x = 89.