K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a) Xét ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(AM=AN;AB=AC\right)\)

Do đó: MN//BC(Định lí Ta lét đảo)

Xét tứ giác BMNC có MN//BC(gt)

nên BMNC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)

Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BMNC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

Bài 2: 

Ta có: \(\widehat{ACD}=\widehat{ACB}+\widehat{DCB}\)(tia CB nằm giữa hai tia CA và CD)

\(\Leftrightarrow\widehat{ACD}=45^0+45^0=90^0\)

Xét tứ giác ACDB có 

CD//AB(cùng vuông góc với AC)

nên ACDB là hình thang có hai đáy là CD và AB(Định nghĩa hình thang)

Hình thang ACDB(CD//AB) có \(\widehat{CAB}=90^0\)(gt)

nên ACDB là hình thang vuông(Định nghĩa hình thang vuông)

3 tháng 5 2019

a, xét tam giác ABD và tam giác ACD có : AD chung

AB = AC do tam giác ABC cân tại A (gt)

góc BAD = góc CAD do AD là phân giác của góc BAC (gt)

=> tam giác ABD = tam giác ACD (c-g-c)

b, tam giác ABD = tam giác ACD (câu a)

=> BD = DC (đn) mà D nằm giữa B; C 

=> D là trung điểm của BC (đn)

=> AD là trung tuyến

CF là trung tuyến

CF cắt AD tại G

=> G là trong tâm của tam giác ABC (đl)

3 tháng 5 2019

c, Ta có : tam giác EDC có EH vừa là đường trung tuyến vừa là đường cao

\(\Rightarrow\)tam giác EDC cân tại E

D, Vì EH // AD \(\Rightarrow\)theo định lí Ta - lét ta có : \(\frac{DH}{HC}=\frac{AE}{EC}\)

Mà HC = HD \(\Rightarrow\)AE = EC \(\Rightarrow\)E là trung điểm AC 

\(\Leftrightarrow\)BE là đường trung tuyến \(\Rightarrow\)Ba điểm B, G , E thẳng hàng 

b) Ta có: AD+DB=AB(D nằm giữa A và B)

AE+EC=AC(E nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và AD=AE(gt)

nên DB=EC

Xét ΔDBC và ΔECB có 

DB=EC(cmt)

\(\widehat{DBC}=\widehat{ECB}\)(hai góc ở đáy của ΔABC cân tại A)

BC chung

Do đó: ΔDBC=ΔECB(c-g-c)

Suy ra: \(\widehat{BDC}=\widehat{CEB}\)(hai góc tương ứng)

hay \(\widehat{KDB}=\widehat{KEC}\)

Ta có: ΔABE=ΔACD(cmt)

nên \(\widehat{ABE}=\widehat{ACD}\)(hai góc tương ứng)

hay \(\widehat{DBK}=\widehat{ECK}\)

Xét ΔDBK và ΔECK có

\(\widehat{KDB}=\widehat{KEC}\)(cmt)

DB=EC(cmt)

\(\widehat{DBK}=\widehat{ECK}\)(cmt)

Do đó: ΔKBD=ΔKCE(g-c-g)

a) Sửa đề: BE=DC

Xét ΔABE và ΔACD có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

AE=AD(gt)

Do đó: ΔABE=ΔACD(c-g-c)

Suy ra: BE=CD(hai cạnh tương ứng)

23 tháng 7 2021

Trong ∆ ADK ta có BH là đường trung bình của ∆ ADK.

 

⇒ BH // DK (tính chất đường trung bình của tam giác)

Hay BH // MK

Trong ∆ BCH ta có M là trung điểm của BC

MK // BH

⇒ CK = HK

AK = AH + HK = 2HK

Suy ra: AH = 2 CK.

23 tháng 7 2021

sao mik ko nhìn thấy đề bài nhỉ