Chứng minh rằng:
\(\dfrac{a+b}{\sqrt{a\left(3a+b\right)+\sqrt{b\left(3b+a\right)}}}\ge\dfrac{1}{2}\) với a,b dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐt bunhiakovsky ta có:
`(\sqrt{a(3a+b)}+\sqrt{b(3b+a)})^2<=(a+b)(3a+b+3b+a)`
`<=>(\sqrt{a(3a+b)}+\sqrt{b(3b+a)})^2<=4(a+b)^2`
`<=>\sqrt{a(3a+b)}+\sqrt{b(3b+a)}<=2(a+b)`
`=>(a+b)/(\sqrt{a(3a+b)}+\sqrt{b(3b+a)})>=1/2`
Dấu "=" `<=>a=b`
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\)
\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}\)
\(=\sqrt{4\left(a+b\right)^2}=2\left(a+b\right)\)
\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)
Áp dụng Cauchy-Schwarz ta có:
\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{1}{2}\)
Ta có:
\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\)
\(\ge\frac{2\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}=\frac{2\left(a+b\right)}{4\left(a+b\right)}=\frac{1}{2}\)
Dấu = xảy ra khi \(a=b\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}=\sqrt{a}\sqrt{3a+b}+\sqrt{b}\sqrt{3b+a}\)
\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}=2\left(a+b\right)\)
\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)
Đẳng thức xảy ra khi \(a=b\)
Ta chứng minh 2 bất đẳng thức phụ sau: với x, y, z dương thì:
\(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\left(1\right)\)
\(\left(1+x\right)\left(1+y\right)\left(1+z\right)\ge\left(1+\sqrt[3]{xyz}\right)^3\left(2\right)\)
+ Chứng minh BĐT (1), sử dụng BĐT AM - GM:
\(x^4+x^4+y^4+z^4\ge4x^2yz\)
\(y^4+y^4+x^4+z^4\ge4xy^2z\)
\(z^4+z^4+x^4+y^4\ge4xyz^2\)
Cộng dồn lại ta có: \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)
+ Chứng minh BĐT (2). Ta có:
\(\left(1+x\right)\left(1+y\right)\left(1+z\right)=1+x+y+z+xy+yz+xyz\ge1+3\sqrt[3]{xyz}+3\sqrt[3]{x^2y^2z^2}+xyz=\left(1+\sqrt[3]{xyz}\right)^3\)
Bây giờ ta quay lại chứng minh BĐT ở đề.
BĐT cần chứng minh tương đương với BĐT sau:
\(\sqrt[4]{\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4}\ge\sqrt[4]{3}+\dfrac{\sqrt[4]{243}}{2+abc}\)
\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge3\left(1+\dfrac{3}{2+abc}\right)^4\)
Sử dụng BĐT (1) ta có:
\(\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Sử dụng BĐT (2) và BĐT AM - GM ta có:
\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^3\left(3+\dfrac{3}{\sqrt[3]{abc}}\right)\)
\(\Rightarrow\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\left(1+\dfrac{1}{\sqrt[3]{abc.1.1}}\right)^4\ge3\left(1+\dfrac{3}{2+abc}\right)^4\)
Vậy BĐT đã được chứng minh. Đẳng thức xảy ra <=> a = b = c.
Áp dụng BĐT \(\sqrt{xy}\le\frac{x+y}{2}\)
\(VT=\frac{2\left(a+b+c\right)}{\sqrt{4a\left(a+3b\right)}+\sqrt{4b\left(b+3c\right)}+\sqrt{4c\left(c+3a\right)}}\)
\(\Rightarrow VT\ge\frac{2\left(a+b+c\right)}{\frac{4a+a+3b}{2}+\frac{4b+b+3c}{2}+\frac{4c+c+3a}{2}}\)
\(\Rightarrow VT\ge\frac{4\left(a+b+c\right)}{8\left(a+b+c\right)}=\frac{1}{2}\) (đpcm)
Dấu "=" khi \(a=b=c\)
\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)
=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)
Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^
Lời giải:
Sử dụng PP khai triển :
\(\frac{a+b}{\sqrt{a(3a+b)+b(3b+a)}}\geq \frac{1}{2}\)
\(\Leftrightarrow \frac{(a+b)^2}{a(3a+b)+b(3b+a)}\geq \frac{1}{4}\)
\(\Leftrightarrow 4(a+b)^2\geq a(3a+b)+b(3b+a)\)
\(\Leftrightarrow a^2+b^2+6ab\geq 0\)
\(\Leftrightarrow (a+b)^2+4ab\geq 0\). Điều này luôn đúng với \(a,b\geq 0\) tuy nhiên dấu bằng không xảy ra do \(a,b\neq 0\)
Do đó: \(\frac{a+b}{\sqrt{a(3a+b)+b(3b+a)}}> \frac{1}{2}\)
mk nghĩ đề bài như này ms đúng chứ
\(\dfrac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\dfrac{1}{2}\)
vs a,b>0
cm \(vt=\dfrac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\)
\(\ge\dfrac{2\left(a+b\right)}{\dfrac{4a+3a+b}{2}+\dfrac{4b+3b+a}{2}}=\dfrac{2\left(a+b\right)}{\dfrac{8\left(a+b\right)}{2}}=\dfrac{1}{2}\)(dpcm)
dau = xay ra khi a=b>0