(\({{1} \over 2}\)+\({{1} \over 3}\)+...+\({{1} \over 2014}\))*x=\({{2013} \over 1}\)+\({{2012} \over 2}\)+...+\({{2} \over 2012}\)+\({{1} \over 2013}\)
GIẢI GIÚP EM VỚI MN ƠI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 8/x-8 + 11/x-11 = 9/x-9 + 10/ x-10
b, x/x-3 - x/x-5 = x/x-4 - x/x-6
c, 4/x^2-3x+2 - 3/2x^2-6x+1 +1 = 0
d, 1/x-1 + 2/ x-2 + 3/x-3 = 6/x-6
e, 2/2x+1 - 3/2x-1 = 4/4x^2-1
f, 2x/x+1 + 18/x^2+2x-3 = 2x-5 /x+3
g, 1/x-1 + 2x^2 -5/x^3 -1 = 4/ x^2 +x+1
\(VP=\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{2}{2012}+\dfrac{1}{2013}\)
\(VP=2013+\dfrac{2012}{2}+...+\dfrac{2}{2012}+\dfrac{1}{2013}\)
\(VP=1+\left(\dfrac{2012}{2}+1\right)+....+\left(\dfrac{2}{2012}+1\right)+\left(\dfrac{1}{2013}+1\right)\)
\(VP=\dfrac{2014}{2014}+\dfrac{2014}{2}+...+\dfrac{2014}{2012}+\dfrac{2014}{2013}\)
\(VP=2014\left(\dfrac{1}{2}+..+\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}\right)\)
\(VP-VT=2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)-x\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)=0\)
\(\Rightarrow\left(2014-x\right)\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}\right)=0\)
\(\Rightarrow x=2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\ne0\right)\)