K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2015

\(\frac{10n-3}{2n-5}=\frac{10n-25+22}{2n-5}=\frac{5.\left(2n-5\right)}{2n-5}+\frac{22}{2n-5}=5+\frac{22}{2n-5}\) có GTLN

<=> \(\frac{22}{2n-5}\) có GTLN <=> 2n-5 có GTNN. Vì 2n-5 \(\ne\) 0 nên => 2n - 5 = 1 => 2n = 6 => n = 3.

      Vậu n = 3 thỏa mãn đề bài

11 tháng 3 2022

vậy n=3 thỏa mãn đề bài

17 tháng 3 2022

nếu gấp thì....

17 tháng 3 2022

tham khảo :(nha anh :)
Câu hỏi của nguyễn ngọc linh - Toán lớp 6 - Học trực tuyến OLM
 

18 tháng 3 2016

a, Để A thuộc z thì 4n + 1 chia hết cho 2n + 3

Mà 2n + 3 chia hết cho 2n + 3 => 2(2n + 3) chia hết cho 2n + 3

=> 4n + 1 - 2(2n + 3) chia hết cho 2n + 3

=> 4n + 1 - 4n - 6 chia hết cho 2n + 3

=> -5 chia hết cho 2n + 3

=> 2n + 3 thuộc {-1; 1; -5; 5}

=> 2n thuộc {-4; -2; -8; 2}

=> n thuộc {-2; -1; -4; 1}

b, Ta có:

\(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)

+ Để A nhỏ nhất thì \(\frac{5}{2n+3}\)lớn nhất => 2n + 3 nhỏ nhất dương (Vì 2n + 3 âm thì 5/2n+3 âm, 2n + 3 khác 0)

=> 2n + 3 = 1

=> 2n = -2

=> n = -1

+ Lớn nhất xét tương tự

15 tháng 3 2016

Ai k cho mình tròn 60 với

15 tháng 3 2016

k cho minh vs 

16 tháng 4 2020

A=\(\frac{2n+5}{n+1}\left(n\ne-1\right)\)

\(A=\frac{2\left(n+1\right)+3}{n+1}=2+\frac{3}{n+1}\)

để A đạt GTLN thì \(\frac{3}{n+1}\)đạt GTLN

=> n+1 là số nguyên dương nhỏ nhất

=> n+1=1

=> n=0 (tmđk)

*)làm tương tự với TH nhỏ nhất

16 tháng 4 2020

\(A=\frac{2n+5}{n+1}\left(n\ne-1\right)\)

\(A=\frac{2n+5}{n+1}=\frac{2\left(n+1\right)+3}{n+1}=2+\frac{3}{n+1}\)

* Để A đạt GTLN => \(\frac{3}{n+1}\)có GTLN 

=> n + 1 = số nguyên dương nhỏ nhất

=> n + 1 = 1

=> n = 0

Với n = 0 => \(A=2+\frac{3}{0+1}=2+3=5\)

Vậy MaxA = 5 khi n = 0

* GTNN thì mình chịu nhé xD *