Cho các số x,y thỏa mãn : x/2013=y/2014=z/2015 . CMR : (x-z)^3=8(x-y^2)*(y-z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}\)
Suy ra \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-y}{2013-2014}=\dfrac{x-y}{-1}\)
Nếu \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\Rightarrow x=y=z=0\)
Vậy \(T=\frac{\left(x-z\right)^2}{\left(x-y\right)^2.\left(y-z\right)}=\frac{0^2}{0^2.0}\) mà phân số được viết dưới dạng \(\frac{a}{b}\) với a thuộc Z và b khác 0
\(\Rightarrow\)T không có giá trị thỏa mãn
Áp dụng tc dtsbn:
\(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-z}{-2}=\dfrac{y-z}{-1}=\dfrac{x-y}{-1}\\ \Leftrightarrow\dfrac{x-z}{2}=\dfrac{y-z}{1}=\dfrac{x-y}{1}\\ \Leftrightarrow x-z=2\left(y-z\right)=2\left(x-y\right)\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)
Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\)
\(\Rightarrow\hept{\begin{cases}x=2013k\\y=2014k\\z=2015k\end{cases}}\)
Ta có :
4(x - y)(y - z) = 4(2013k - 2014k)(2014k - 2015k)
=4.(-k).(-k) = 4k2 (1)
(z - x)2 = (2015k - 2013k)2 = (2k)2 = 4k2 (2)
Từ 1 và 2
=> 4(x - y)(y - z) = (z - x)2
2012(x + y) = 2013(y + z) = 2014 (z + x)
\(=\frac{x+y}{\frac{1}{2012}}=\frac{y+z}{\frac{1}{2013}}=\frac{z+x}{\frac{1}{2014}}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x+y}{\frac{1}{2012}}=\frac{y+z}{\frac{1}{2013}}=\frac{z+x}{\frac{1}{2014}}=\frac{\left(z+x\right)-\left(y+z\right)}{\frac{1}{2014}-\frac{1}{2013}}=\frac{\left(y+z\right)-\left(x+y\right)}{\frac{1}{2013}-\frac{1}{2012}}\)
\(=\frac{x-y}{\frac{-1}{2013.2014}}=\frac{z-x}{\frac{-1}{2012.2013}}\)
= (x - y).(-2013.2014) = (z - x).(-2012.2013)
=> (x - y).(-2013.2014).\(\frac{-1}{2013.2014.1006}\) = (z - x).(-2012.2013).\(\frac{-1}{2013.2014.1006}\)
\(\Rightarrow\frac{x-y}{1006}=\frac{z-x}{1007}\left(đpcm\right)\)
Giải :
Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\Rightarrow\hept{\begin{cases}x=2013k\\y=2014k\\z=2015k\end{cases}}\)
Khi đó, ta có : 4(2013k - 2014k)(2014k - 2015k) = 4. (-k).(-k) = 4.k2 (1)
(2015k - 2013k)2 = (2k)2 = 22.k2 = 4k2 (2)
Từ (1) và (2) suy ta 4(x - y)(y - z) = (z - x)2
\(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\Rightarrow\frac{2014.2015.x}{2013.2014.2015}=\)\(\frac{y.2013.2015}{2013.2014.2015}=\frac{2013.2014.z}{2013.2014.2015}\)
\(\Rightarrow2014.2015.x=y.2013.2015=z.2013.2014\)
\(\Rightarrow x=2013;y=2014;z=2015\)
Đến đây bạn tự thay vào rồi tính nhé!