với số x không âm , tìm GTNN và GTLN của
B = \(\frac{1-\sqrt{x}}{x-\sqrt{x}+1}\)
thank
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, ta có:
\(x^3+y^3=x^2-xy+y^2\)
hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)
+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)
+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)
Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
Câu 1:
\(a-\sqrt{a}+1=a-2.\sqrt{a}.\frac{1}{2}+\frac{1}{2^2}+\frac{3}{4}\)
\(=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\)
Ta thấy \((\sqrt{a}-\frac{1}{2})^2\geq 0, \forall a\) không âm
\(\Rightarrow a-\sqrt{a}+1=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)
Vậy GTNN của biểu thức là $\frac{3}{4}$. Dấu "=" xảy ra khi \((\sqrt{a}-\frac{1}{2})^2=0\Leftrightarrow a=\frac{1}{4}\)
Câu 2:
\(\sqrt{1+2a-a^2}=\sqrt{2-(a^2-2a+1)}=\sqrt{2-(a-1)^2}\)
Ta thấy \((a-1)^2\geq 0, \forall a\) thuộc tập xác định
\(\Rightarrow 2-(a-1)^2\leq 2\)
\(\Rightarrow \sqrt{1+2a-a^2}=\sqrt{2-(a-1)^2}\leq \sqrt{2}\)
Vậy GTLN của biểu thức là $\sqrt{2}$ khi \((a-1)^2=0\Leftrightarrow a=1\)
\(B=\frac{ab}{a+b+2}\Rightarrow2B=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-a^2-b^2}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)
Do a ; b không âm , áp dụng BĐT Cô - si cho 2 số , ta có :
\(a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{2.4}=\sqrt{8}\)
\(\Rightarrow a+b-2\le\sqrt{8}-2\)
\(\Rightarrow2B\le\sqrt{8}-2\Rightarrow B\le\sqrt{2}-1\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=\sqrt{2}\)
Do x ; y không âm , \(x^2+y^2=1\)
\(\Rightarrow\left|x\right|;\left|y\right|\le1\) \(\Rightarrow0\le x;y\le1\)
\(\Rightarrow x\ge x^2;y\ge y^2\Rightarrow x+y\ge x^2+y^2=1\)
\(x,y\ge0\Rightarrow xy\ge0\)
Ta có : \(A=\sqrt{5x+4}+\sqrt{5y+4}\)
\(\Rightarrow A^2=5x+4+5y+4+2\sqrt{\left(5x+4\right)\left(5y+4\right)}\)
\(=5\left(x+y\right)+8+2\sqrt{25xy+20y+20x+16}\)
\(\ge5.1+8+2\sqrt{25.0+20.1+16}=13+2.6=25\)
\(\Rightarrow A\ge5\)
Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)
Đặt \(\sqrt{x}=a\ge0\)
\(\Rightarrow A=\frac{a^2+a+1}{a^2+2a+1}\)
\(\Leftrightarrow\left(A-1\right)a^2+\left(2A-1\right)a+A-1=0\)
Để PT theo nghiệm a có nghiệm thì
\(\Delta=\left(2A-1\right)^2-4\left(A-1\right)\left(A-1\right)\ge0\)
\(\Leftrightarrow4A-3\ge0\)
\(\Leftrightarrow A\ge\frac{3}{4}\)
Ta lại có: \(A=\frac{a^2+a+1}{a^2+2a+1}=1-\frac{a}{a^2+2a+1}\le1\)
Vậy ...
6 nhé
@@@@@@@@@@@@
k cho mk
HT