K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2021

Bài 2.

a) 1013 = (100+1)3 = 1003+3.1002.1+3.100.12+13 

   = 1000000+30000+300+1 = 1030301

b) 2993 = (300-1)3 = 3003-3.3002.1+3.300.12-13

   = 27000000 - 270000 + 900 -1 = 26730899

c) 993 = (100-1)3 = 1003-3.1002.1+3.100.12-1

   = 1000000 - 30000 + 300 -1 = 970299

7 tháng 9 2021

\(1,\\ b,A=\left(u-v\right)^3+3uv\left(u+v\right)\\ A=u^3-3u^2v+3uv^2-v^3+3u^2v+3uv^2=u^3-v^3\\ c,6\left(c-d\right)\left(c+d\right)+2\left(c-d\right)^2-\left(c-d\right)^3\\ =6c^2-6d^2+2c^2-4cd+2d^2-c^3+3c^2d-3cd^2+d^3\\ =8c^2-c^3-4d^2-4cd+3c^2d-3cd^2+d^3\)

\(2,\\ a,101^3=\left(100+1\right)^3\\ =100^3+3\cdot10000\cdot1+3\cdot100\cdot1+1\\ =1000000+30000+300+1=1030301\\ b,299^3=\left(300-1\right)^3\\ =300^3-3\cdot90000\cdot1+3\cdot300\cdot1-1\\ =27000000-270000+900-1\\ =26730899\\ c,99^3=\left(100-1\right)^3\\ =100^3-3\cdot10000\cdot1+3\cdot100\cdot1-1\\ =1000000-30000+300-1=970299\)

6 tháng 9 2021

a. A = (a + b)3 - (a - b)3

A = \(\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

A = (a + b - a + b)\(\left[a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right]\)

A = 2b(a2 + a2 + a2 + 2ab - 2ab + b2 - b2 + b2)

A = 2b(3a2 + b2)

A = 6a2b + 2b3

8 tháng 4 2019

a) A = u 3   +   6 uv 2   –   v 3 .

b)  B = ( c + 2 d ) + ( c − 2 d 3 = 8 c 3 .

AH
Akai Haruma
Giáo viên
20 tháng 6 2021

Lời giải:
a.

$A=(u-v)^3+3uv(u+v)=u^3-3u^2v+3uv^2-v^3+3u^2v+3uv^2$

$=u^3-v^3+6uv^2$

b.

$3(c-2d)^2+3(c+2d)^2+(c+2d)^3+(c-2d)^3$

$3[(c-2d)^2+(c+2d)^2]+[(c+2d)+(c-2d)][(c+2d)^2-(c+2d)(c-2d)+(c-2d)^2]$

$=3(2c^2+8d^2)+2c[2c^2+8d^2-(c^2-4d^2)]$

$=6(c^2+4d^2)+2c(c^2+12d^2)$

$=2c^3+24cd^2+6c^2+24d^2$

 

20 tháng 10 2018

a) ( 100   +   1 ) 3   =   100 3   +   3 . 100 2 + 3.100 + 1 = 1030301.

b) ( 47   +   3 ) 3   =   50 3  = 125000.

c) ( 300   –   1 ) 3  = 26730899.

d) ( 1008   –   23 ) 3   =   1000 3   =   10 9 .

14 tháng 11 2018

a) C = c + d + 2 ( c − d ) 3 = ( 3 c − d ) 3 .  

b)  D = m − n ( n + p ) 3 = ( m − 2 n − p ) 3 .

12 tháng 1 2021

a, -( -a + c - d) - ( c - d + d) =  a - c + d - c + d - d =  a + d

b, - ( a+b-c+d) + (a-b-c-d) = -a -b+c-d + a-b-c-d = -2b + (-2c)= -2(b+c)

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

NV
8 tháng 1 2022

1. Đề sai, ví dụ (a;b;c)=(1;2;2) hay (1;2;7) gì đó

2. Theo nguyên lý Dirichlet, trong 4 số a;b;c;d luôn có ít nhất 2 số đồng dư khi chia 3. 

Không mất tính tổng quát, giả sử đó là a và b thì \(a-b⋮3\)

Ta có 2 TH sau:

- Trong 4 số có 2 chẵn 2 lẻ, giả sử a, b chẵn và c, d lẻ \(\Rightarrow a-b,c-d\) đều chẵn \(\Rightarrow\left(a-b\right)\left(c-d\right)⋮4\)

\(\Rightarrow\) Tích đã cho chia hết 12

- Trong 4 số có nhiều hơn 3 số cùng tính chẵn lẽ, khi đó cũng luôn có 2 hiệu chẵn (tương tự TH trên) \(\Rightarrowđpcm\)

3. Với \(n=1\) thỏa mãn

Với \(n>1\) ta có \(3^n\equiv\left(5-2\right)^n\equiv\left(-2\right)^n\left(mod5\right)\)

\(\Rightarrow n.2^n+3^n\equiv n.2^n+\left(-2\right)^n\left(mod5\right)\)

Mặt khác \(n.2^n+\left(-2\right)^n=2^n\left(n+\left(-1\right)^n\right)\)

Mà \(2^n⋮̸5\Rightarrow n+\left(-1\right)^n⋮5\)

TH1: \(n=2k\Rightarrow2k+1⋮5\Rightarrow2k+1=5\left(2m+1\right)\Rightarrow k=5m+2\)

\(\Rightarrow n=10m+4\)

TH2: \(n=2k+1\Rightarrow2k+1-1⋮5\Rightarrow2k⋮5\Rightarrow k=5t\Rightarrow n=10t+1\)

Vậy với \(\left[{}\begin{matrix}n=10k+4\\n=10k+1\end{matrix}\right.\) (\(k\in N\)) thì số đã cho chia hết cho 5

I. Trắc nghiệm Câu 1 : Để biểu thức x^3 + 6x^2 + 12x + m là lập phương cùa một tổng thì giá trị của m là : A. 8 B. 4 C. 6 D. 16 Câu 2 : x^2 - 2x + 9 = ( x - 3 )^2 A. Đúng B. Sai Câu 3 : ( 1/2x - 3 )^3 = 1/8x^3 - 9/4x^2 + 27/2x - 27 A. Đúng B. Sai Câu 4 : Tính giá trị của các biểu thức A = 8x^3 - 12x^2y + 6xy^2 - y^3 tại x = 1/2, y = 1 A. 1/4 B. 27/8 C. -3/4 D. 0 Câu 5 : Rút gọn biểu thức B = ( x + 2 )^3 - ( x - 2 )^3 - 12x^2 ta thu đc kết quả là :...
Đọc tiếp

I. Trắc nghiệm
Câu 1 : Để biểu thức x^3 + 6x^2 + 12x + m là lập phương cùa một tổng thì giá trị của m là :
A. 8 B. 4 C. 6 D. 16
Câu 2 : x^2 - 2x + 9 = ( x - 3 )^2
A. Đúng B. Sai
Câu 3 : ( 1/2x - 3 )^3 = 1/8x^3 - 9/4x^2 + 27/2x - 27
A. Đúng B. Sai
Câu 4 : Tính giá trị của các biểu thức A = 8x^3 - 12x^2y + 6xy^2 - y^3 tại x = 1/2, y = 1
A. 1/4 B. 27/8 C. -3/4 D. 0
Câu 5 : Rút gọn biểu thức B = ( x + 2 )^3 - ( x - 2 )^3 - 12x^2 ta thu đc kết quả là :
A. 16 B. 2x^3 + 24x C. x^3 + 24x^2 + 16 D. 0
Câu 6 : x^2 - 1 =
A. ( x -1 ) ( x + 1 ) B. ( x + 1 ) ( x + 1 ) C. x^2 + 2x + 1 D. x^2 - 2x - 1
Câu 7 : x^2 - 10xy + 25y^2 = ( 5 - y )^2
A. Đúng B. Sai
Câu 8 : Tính giá trị cuả các biểu thức : A = 4x^2 - 6xy + 9y^2 tại x = 1/2, y = 2/3
A. 4 B. 1/4 C. -1 D. 1
Câu 9 : Rút gọn biểu thức A = ( x - 2 )^2 - ( x - 3 )^2 + ( x + 4 )^2 thu đc kết quả :
A. x^2 + 10x + 11 B. 9x^2 - 1 C. 3x^2 - 9 D. x^2 - 9
Câu 10 : Giá trị nhỏ nhất của biểu thức A = 9x^2 - 6x + 4 đạt đc khi x bằng
A. 2 B. 3 C. 1/3 D.
Giúp mk vs ạ mk đang cần gấp


0