K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

\(\dfrac{x}{1007}-\dfrac{1}{1.2}-\dfrac{1}{2.3}-\dfrac{1}{3.4}-...-\dfrac{1}{13.14}=\dfrac{15}{14}\)

\(\dfrac{x}{1007}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{13.14}\right)=\dfrac{15}{14}\)

\(\dfrac{x}{1007}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{13}-\dfrac{1}{14}\right)=\dfrac{15}{14}\)

\(\dfrac{x}{1007}-\left(1-\dfrac{1}{14}\right)=\dfrac{15}{14}\)

\(\dfrac{x}{1007}-\dfrac{13}{14}=\dfrac{15}{14}\)

\(\dfrac{x}{1007}=\dfrac{15}{14}+\dfrac{13}{14}\)

\(\dfrac{x}{1007}=\dfrac{28}{14}\)

\(\dfrac{x}{1007}=2\)

\(x=2.1007\)

\(x=2014\)

Vậy \(x=2014\)

26 tháng 1 2018

c.ơn bn nhiều

20 tháng 3 2022

\(x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ x\cdot\left(1-\dfrac{1}{50}\right)=1\\ \dfrac{49}{50}x=1\\ x=1:\dfrac{49}{50}\\ x=\dfrac{50}{49}\)

20 tháng 3 2022

\(x.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\dfrac{49}{50}=1\\ \Rightarrow x=1:\dfrac{49}{50}\\ \Rightarrow x=\dfrac{50}{49}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)

\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2022}\)

=>x+1=2022

hay x=2021

11 tháng 4 2021

`x/(1.2)+x/(2.3)+x/(3.4)+.....+x/(2017.2018)=1`

`-> x/1 - x/2 +x/2-x/3+x/3-x/4+........+x/2017-x/2018=1`

`-> x-x/2018=1`

`-> 2017/2018 .x=1`

`-> x=2018/2017`

11 tháng 4 2021

Bài 1: 

a) Ta có: \(\dfrac{7^4\cdot3-7^3}{7^4\cdot6-7^3\cdot2}\)

\(=\dfrac{7^3\cdot\left(7\cdot3-1\right)}{7^3\cdot2\left(7\cdot3-1\right)}\)

\(=\dfrac{1}{2}\)

c) Ta có: \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

\(\Leftrightarrow\dfrac{1}{3}\cdot E=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)

\(\Leftrightarrow E-\dfrac{1}{3}\cdot E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)

\(\Leftrightarrow E\cdot\dfrac{2}{3}=1-\dfrac{1}{3^{101}}\)

\(\Leftrightarrow E=\dfrac{3-\dfrac{3}{3^{101}}}{2}=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)

9 tháng 1 2021

thanks