K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

ta cần chứng minh điều này :

\(CMR:1^1+2^2+3^3+4^4+...+n^n< \left(n+1\right)^{n+1}\) (1)

+) với \(n=1\) thì (1) đúng

+) giả sử (1) đúng với \(n=k\) tức là : \(1^1+2^2+...+k^k< \left(k+1\right)^{k+1}\)

ta cũng có thể chứng minh được (1) đúng với \(n=k+1\)

tức : \(1^1+2^2+...+k^k+\left(k+1\right)^{k+1}< \left(k+2\right)^{k+2}\)

thật vậy : ta có \(VT< 2\left(k+1\right)^{k+1}< \left(k+2\right)\left(k+2\right)^{k+1}=\left(k+2\right)^{k+2}\)

\(\Rightarrow\) (đpcm)

áp dụng cho bài toán ta có :

\(1^1+2^2+...+99^{99}< 100^{100}\)

\(\Leftrightarrow1^1+2^2+...+99^{99}+100^{100}< 2.100^{100}\)

mà ta để dàng thấy \(2.100^{100}\) có 201 chữ số \(\Rightarrow\) (đpcm)

15 tháng 1 2019

mk chưa đọc hết đề nên giải còn thiếu ! nên h mk sẽ giải cho hết luôn nhé

áp dụng bđt vừa chứng minh ta có :

\(M< 2.100^{100}\Rightarrow\) số hạng đầu là số 1

theo phương pháp cũ ta có thể chứng minh :

\(1^1+2^2+...+n^n< \left(n+1\right)^n\)

từ đó ta có thể thấy được :

\(1^1+2^2+...+99^{99}< 100^{99}\) \(\Rightarrow M< 100^{100}+100^{99}\)

\(\Rightarrow\) số hạng thứ 2 là số 0

\(\Rightarrow\) tổng 2 chữ số đầu tiên của số M là : \(1+0=1\)

vậy ....

28 tháng 2 2020

\(A=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)

\(\Leftrightarrow A< B\)

28 tháng 2 2020

a. tính A = 3+3^2+3^3+3^4+.....+3^100

3A=3^2+3^3+3^4+3^5+....+3^100

3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100

mà B=3^100-1 => A<B