Chứng tỏ rằng nếu số a và b chia cho7 có cùng số dư thì (a-b) chia hết cho 7 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Gọi số dư của hai số đó là N ( N khác 0 ; N nhỏ hơn 7 )
Gọi 2 số đó là 7A và 7B ( A , B khác 0 ; A>B )
Ta có : ( 7A + N ) : 7 ( dư N )
( 7B + N ) : 7 ( dư N )
=> ( 7A + N ) - ( 7B + N )
= 7A - 7B
= 7 . ( A - B ) chia hết cho 7
Vậy 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 .
B) Theo đề ta có : 3 chỉ có 2 số dư là 1 hoặc 2
Gọi 2 số đó là 3k+1 và 3h+2
Ta có : 3k+1 : 3 ( dư 1 )
3h+2 : 3 ( dư 2 )
=> ( 3k+1 ) + ( 3h+2 )
= 3k+ 3h + 3
= 3 . ( k + h + 1 )
Vậy 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3
Đọc thì nhớ tk nhá
Gọi 2 số đó là a và b và d là số dư khi chia a cho 7 và chia b cho 7
\(\Rightarrow\left\{{}\begin{matrix}a=7k+d\\b=7n+d\end{matrix}\right.\) \(\left(k,n\in Z\right)\)
\(\Rightarrow a-b=7k+d-7n-d=7\left(k-n\right)⋮7\left(đpcm\right)\)
a) Ta có:
a = 3k + r
b = 3h + r
(Chú ý k > h vì a > b)
a - b = 3k + r - 3h - r
= 3(k - h)
\(\Rightarrow\)
b) Đề sai. Vì nếu a : 3 dư 2 và b chia hết cho 3 thì tổng a + b sẽ không chia hết cho 3
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
Ta có:abba=1001a+110b=11(91a+10b) chia hết cho 11
Vậy 11 là ước của số có dạng abba
Gọi 2 số chia 7 có cùng số dư là 7a+c và 7b+c(c là số dư khi chia cho 7 và c<7)
=>7a+c-7b-c=7a-7b=(7(a-b) chia hết cho 7
Vậy hiệu 2 số chia 7 có cùng số dư thì chia hết cho 7
ta có abbc=1000a+100b+10b+a=(1000a+a)+(100b+10b)=a(1000+1)+b(100+10)
=1001a+110b
ta có 1001 chia hết cho 11 =>1001a chia hết cho 11
110 cia hết cho 11=>110b chia hết cho 11
suy ra 1001a+110b chia hết cho 11 hay abba chia hết cho 11
hay 11 là ước của số có dạng abba.
gọi a và b là hai số có cùng số dư là r khi chia cho 7 (giả sử a > hoặc bằng b)
ta có:a=7m+r,b=7n+r(m,m thuộc N)
khi đó a-b=(7m+r)-(7n-r)=7m-7n chia hết cho 7