K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

Theo đề bài ta có:

\(\left(x+y+z\right)\cdot\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)=2017\cdot\dfrac{1}{672}\)

\(\Rightarrow\dfrac{x+y+z}{x+y}+\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{z+x}=\dfrac{2017}{672}\)

\(\Rightarrow1+\dfrac{z}{x+y}+1+\dfrac{x}{y+z}+1+\dfrac{y}{z+x}=\dfrac{2017}{672}\)

\(\Rightarrow C=\dfrac{2017}{672}-3=\dfrac{1}{672}\)

AH
Akai Haruma
Giáo viên
16 tháng 1 2018

Lời giải:

\(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)

\(A+3=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{x+y}+1\right)\)

\(A+3=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\)

\(A+3=2017\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

\(A+3=2017.\frac{1}{672}=\frac{2017}{672}\)

\(\Rightarrow A=\frac{2017}{672}-3=\frac{1}{672}\)

19 tháng 12 2017

Chào bạn

bạn nhân chéo lên rồi tách ra thì bạn sẽ có

1/x+1/y+1/z=1/x+y+z tương đương với (x+y)(y+z)(x+z)=0

Đến đây thì dễ rồi

19 tháng 12 2017

Bạn có thể giải rõ ra được không

12 tháng 11 2017

đúng rùi đó

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Lời giải:
Nếu $x+y+z=0$ thì:

$\frac{x+y-z}{z}=\frac{-z-z}{z}=-2$

$\frac{y+z-x}{x}=\frac{-x-x}{x}=-2$

$\frac{z+x-y}{y}=\frac{-y-y}{y}=-2$ 

(thỏa mãn đkđb)

Khi đó:

$P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{xyz}$

$=\frac{(-z)(-x)(-y)}{xyz}=\frac{-xyz}{xyz}=-1$

Nếu $x+y+z\neq 0$

Áp dụng TCDTSBN:

$\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{z+x+y}=\frac{x+y+z}{x+y+z}=1$

$\Rightarrow x+y=2z; y+z=2x, z+x=2y$. Khi đó:

$P=\frac{(x+y)(y+z)(z+x)}{xyz}=\frac{2z.2x.2y}{xyz}=8$

6 tháng 8 2017

Áp dụng TCDTSBN ta có:

\(\dfrac{x+y+2017}{z}=\dfrac{y+z-2018}{x}=\dfrac{z+x+1}{y}=\dfrac{x+y+2017+y+z-2018+z+x+1}{z+x+y}=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\dfrac{z+x+1}{y}=\dfrac{2}{x+y+z};\dfrac{z+x+1}{y}=2\\ \Rightarrow\dfrac{2}{x+y+z}=2\\ \Rightarrow x+y+z=1\)

\(\left\{{}\begin{matrix}\dfrac{x+y+2017}{z}=2\\\dfrac{y+z-2018}{x}=2\\\dfrac{z+x+1}{y}=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y+2017=2z\\y+z-2018=2x\\z+x+1=2y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y+z=3z-2017\\y+z+x=3x+2018\\z+x+y=3y-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3z-2017=1\\3x+2018=1\\3y-1=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3z=2018\\3x=-2017\\3y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}z=\dfrac{2018}{3}\\x=\dfrac{-2017}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{-2017}{3}\\y=\dfrac{2}{3}\\z=\dfrac{2018}{3}\end{matrix}\right.\)

6 tháng 8 2017

Hình như là sai đề bn ak!

AH
Akai Haruma
Giáo viên
15 tháng 8 2021

Lời giải:
\(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=\frac{1}{x+y-z}\Leftrightarrow \frac{x+y}{xy}=\frac{1}{z}+\frac{1}{x+y-z}=\frac{x+y}{z(x+y-z)}\)

\(\Leftrightarrow (x+y)(\frac{1}{xy}-\frac{1}{z(x+y-z)})=0\)

\(\Leftrightarrow (x+y).\frac{z(x+y-z)-xy}{xyz(x+y-z)}=0\)

\(\Leftrightarrow (x+y).\frac{(z-x)(y-z)}{xyz(x+y-z)}=0\)

\(\Leftrightarrow (x+y)(z-x)(y-z)=0\)

Xét các TH sau:

TH1: $x+y=0$. TH này loại do ĐKXĐ $x,y>0$
TH2: $z-x=0\Leftrightarrow z=x$

$\Leftrightarrow \frac{1}{y}=\frac{2020}{2021}$

\(M=\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}=\frac{2}{\sqrt{y}}=2\sqrt{\frac{2020}{2021}}\)

TH3: $y-z=0$ tương tự TH2, ta có \(M=2\sqrt{\frac{2020}{2021}}\)

19 tháng 12 2020

Bài này ez thôi, làm mãi rồi.

Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

=>\(\dfrac{xy+yz+xz}{xyz}=0\)

=> xy+yz+zx=0

=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)

Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)

           y2+2xz=y2+xz-xy-yz=(x-y)(z-y)

           z2+2xy=z2+xy-yz-xz=(x-z)(y-z)

=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

 

 

 

19 tháng 12 2020

Cảm ơn, cậu giỏi quá!!! Thông cảm cho đứa ngu toánbucminh