|x-2|=1-(-4)
Giúp mik vs mik đag cần gấp cho ngày mai
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4 ⋮ x ⇒ x ∈ Ư(4)
Ư(4) = {1;2;4}
⇒ x = {1;2;4}
b) -13 ⋮ (x+2) ⇒ x + 2 ∈ Ư(-13)
Ư(-13) = {1,-1,-13,13}
⇒ x = {-1,-3,-16;11}
\(-x-2=\frac{5}{4}\)
\(\Rightarrow-x=\frac{5}{4}+2=\frac{13}{4}\)
\(\Rightarrow x=\frac{-13}{4}\)
\(-x-2=\frac{5}{4}\)
\(-x=\frac{5}{4}+2\)
\(-x=\frac{13}{4}\)
\(x=-\frac{13}{4}\)
\(\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)
\(TH1:x-1=0\Leftrightarrow x=1\)
\(TH2:x+1=0\Leftrightarrow x=-1\)
\(TH3:x+2=0\Leftrightarrow x=-2\)
nhân đa thức vs đa thức , ko phải tìm x đâu bạn ạ! dù sao cững cảm ơn nh!
\(E=1^2+2^2+3^2+....+59^2\)
\(E=1+2\left(1+1\right)+3\left(2+1\right)+...+59\left(58+1\right)\)
\(E=1+1\times2+2+2\times3+3+....+58\times59+59\)
\(E=\left(1+2+3+...+59\right)+\left(1\times2+2\times3+....+58\times59\right)\)
Ta đặt :
\(A=1+2+3+...+59\)
Số số hạng là \(\left(59-1\right)\div1+1=59\) số hạng
Tổng là \(\left(59+1\right)\times59\div2=1770\)
=> \(A=1770\)
Ta đặt
\(B=1\times2+2\times3+...+58\times59\)
\(3B=1\times2\times3+2\times3\times3+....+58\times59\times3\)
\(3B=1\times2\times3+2\times3\times\left(4-1\right)+...+58\times59\times\left(57-54\right)\)
\(3B=1\times2\times3+2\times3\times4-2\times3\times1+...+58\times59\times57-58\times59\times54\)
\(3B=58\times59\times57\)
\(B=58\times59\times19\)
\(B=65018\)
=> \(E=A+B\)
=> \(E=1770+65018\)
=> \(E=66788\)
Trước hết ta sẽ chứng minh \(1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*). Thật vậy, với \(n=1\) thì hiển nhiên \(1^2=\dfrac{1\left(1+1\right)\left(2.1+1\right)}{6}\). Giả sử (*) đúng đến \(n=k\), khi đó \(1^2+2^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\). Ta cần chứng minh (*) đúng với \(n=k+1\). Ta có:
\(1^2+2^2+...+k^2+\left(k+1\right)^2\)
\(=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(=\dfrac{\left(k+1\right)\left(2k^2+k+6\left(k+1\right)\right)}{6}\)
\(=\dfrac{\left(k+1\right)\left(2k^2+7k+6\right)}{6}\)
\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
\(=\dfrac{\left(k+1\right)\left[\left(k+1\right)+1\right]\left[2\left(k+1\right)+1\right]}{6}\).
Vậy (*) đúng với \(n=k+1\). Ta có đpcm. Thay \(n=59\) thì ta có:
\(E=1^2+2^2+...+59^2=\dfrac{59\left(59+1\right)\left(2.59+1\right)}{6}=70210\)
x + 1 = ( x + 1 )2
x + 1 = x2 + 2x + 1
x - 2x - x2 = - 1 + 1
- x - x2 = 0
- x ( x + 1) = 0
TH1: - x = 0 suy ra x = 0
TH2: x + 1 = 0 suy ra x = - 1
Vậy x = 0 hoặc x = - 1.
\(|x - 2|=1-(-4) \\|x-2|=5\\\left[ \begin{matrix} x-2=5 \\x-2=-5 \end{matrix} \right.\\\left[ \begin{matrix} x=7\\x=-3 \end{matrix} \right.\)