K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

Ể, 2 câu này chỉ là 1 thôi,với lại chỉ có thể tìm được max thôi:v

\(Q=\left|x-2017\right|-\left|x+2018\right|\le\left|x-2017-x+2018\right|=1\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x\ge2017\\x\ge-2018\end{matrix}\right.\Leftrightarrow x\ge2017\)

7 tháng 2 2018

Ta có : |x-2017|+|x+2018|=|2017-x|+|x+2018|>hoặc= 2017-x+x+2018=4035

Dấu bằng xảy ra khi và chỉ khi:

2017-x>hoặc=0 và x+2018>hoặc=0 khi và chỉ khi

x<hoặc=2017 và x>hoặc=-2018 khi va chi khi -2018<hoặc=x<hoặc=2017

Vậy Min Q = 4035 khi va chỉ khi -2018<hoặc=x<hoặc=2017

22 tháng 1 2018

Đáp án: a= 2017

3 tháng 3 2020

Ta có: \(A=|x-2017|+x-2018\)

\(\Rightarrow A=|2017-x|+x-2018\)

\(\Rightarrow A\ge2017-x+x-2018=-1\)

Dấu " = " xảy ra \(\Leftrightarrow x\le2017\)

2 tháng 3 2020

Vì \(|x-2017|\)\(\ge\) \(0\)\(\forall x\)

=>  A\(\ge x-2018\forall x\)

Dấu " = " xảy ra khi \(|x-2017|\)=0

=> x= 2017

3 tháng 7 2021

a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)

Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)

b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)

Thấy : \(x^2+4\ge4\)

\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)

Vậy \(Max=3\Leftrightarrow x=0\)

3 tháng 7 2021

là GTNN á

10 tháng 3 2016

\(\frac{2017}{2018}\)

10 tháng 3 2016

2017 

2018

23 tháng 10 2018

Vì \(\left|x-2019\right|\ge0\forall x\)

\(\Rightarrow A\ge2018\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)

Vậy Amin = 2018 <=> x = 2019

1 tháng 12 2018

123456789

1 tháng 12 2018

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

để A nhỏ nhất => \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất => |x-2016|+2018 nhỏ nhất

\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)

dấu = xảy ra khi |x-2016|=0

=> x=2016

Vậy Min A=\(\frac{2017}{2018}\)khi x=2016

ps: sai sót bỏ qua 

10 tháng 7 2018

ta có

\(\left|x-y\right|+\left|x+1\right|\ge0\)với mọi x,y

\(\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\)với mọi x,y

dấu = sảy ra <=>\(\left|x-y\right|+\left|x+1\right|=0\)mà \(\left|x-y\right|\ge0 VS \left|x+1\right|\ge0\)=>\(\left|x-y\right|=0 VS \left|x+1\right|=0\Leftrightarrow x-y=0 VS x+1=0\Leftrightarrow x=-1 VS y=-1\)