Đề số 3
Bài 1: Phân tích đa thức sau thành nhân tử
a. x2–2x + 2y –xy b. x2+ 4xy –16 + 4y2
Bài 2: Tìm a để đa thức x3+ x2–x + a chia hết cho x + 2
Bài 3: Cho biểu thức K=(a/a-1-1/a^2-a):(1/a+1+2/a^2-1)
a.Tìm điều kiện của a để biểu thức K xác định và rút gọn biểu thức K
b. Tính gí trị biểu thức K khi a=1/2
Bài 4: Cho ΔABCcân tại A. Trên đường thẳng đi qua đỉnh A song song với BC lấy hai điểm M và N sao cho A là trung điểm của MN (M và B cùng thuộc nửa mặt phẳng bờ là AC). Gọi H, I, K lần lượt là trung điểm của các cạnh MB, BC, CN.
a. Chứng minh tứ giác MNCB là hình thang cân?
b. Tứ giác AHIK là hình gì? Tại sao?
Bài 5: Cho xyz = 2006.Chứng minh rằng: 2006x /xy+2006x+2006+y/yz+y+2006+z/xz+z+1=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Bài 1:
Ta có: \(5x^3-3x^2+2x+a⋮x+1\)
\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)
\(\Leftrightarrow a-10=0\)
hay a=10
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
a: \(\Leftrightarrow2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x+2+a-2⋮x^2-x+1\)
=>a=2
b: \(8x^2-48x+6xy-36y\)
\(=8x\left(x-6\right)+6y\left(x-6\right)\)
\(=2\left(x-6\right)\left(4x+3y\right)\)
d: \(a^2-2ab+b^2-4\)
\(=\left(a-b\right)^2-4\)
\(=\left(a-b-2\right)\left(a-b+2\right)\)
Bài 1 :
a) \(x^2-2x+2y-xy\)
\(=\left(x^2-2x\right)+\left(2y-xy\right)\)
\(=x\left(x-2\right)+y\left(2-x\right)\)
\(=x\left(x-2\right)-y\left(x-2\right)\)
\(=\left(x-y\right)\left(x-2\right)\)
b) \(x^2+4xy-16+4y^2\)
\(=\left(x^2-16\right)+\left(4xy+4y^2\right)\)
\(=\left(x-4\right)\left(x+4\right)+4y\left(x+y\right)\)
\(=\left(x-4\right)\left(x+4+4y\right)\left(x+y\right)\)
Bài 3 :
a) \(K=\left(\dfrac{a}{a-1}-\dfrac{1}{a^2-a}\right):\left(\dfrac{1}{a+1}+\dfrac{2}{a^2-1}\right)\)
\(K=\left(\dfrac{a^2}{a\left(a-1\right)}-\dfrac{1}{a\left(a-1\right)}\right):\left(\dfrac{a-1}{\left(a+1\right)\left(a-1\right)}+\dfrac{2}{\left(a+1\right)\left(a-1\right)}\right)\)
\(K=\left(\dfrac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)}\right):\left(\dfrac{a-1+2}{\left(a+1\right)\left(a-1\right)}\right)\)
\(K=\dfrac{a+1}{a}:\dfrac{1}{a+1}=\dfrac{a+1}{a}.a+1=\dfrac{\left(a+1\right)^2}{a}\)
Để biểu thức K được xác định thì \(a\ne0\)
b) Với \(a=\dfrac{1}{2}\) thay vào biểu thức ta có :
\(K=\dfrac{\left(\dfrac{1}{2}+1\right)^2}{\dfrac{1}{2}}=4,5\)