chứng minh rằng \(n^4-1\) chia hết cho 8 với mọi n lẻ.
mong mọi người giúp thank you
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=5.\left(-n\right)\)chia hết cho 5.
ta có
\(\left(2n-1\right)^3-2n-1\)
\(=2n.\left(2n-2\right).\left(2n-2\right)\)
\(=8n.\left(n-1\right)^2⋮8\)
\(\left(2n+1\right)^3-(2n+1)\)
\(=\left(2n-2\right)\left(2n-2\right)2n\)
\(=8n\left(n-1\right)^2⋮8\)
Ta có : n^3 - n (n € Z )
= n(n^2 -1)
=n(n-1)(n+1)
=(n-1)n(n+1)
mà n-1 ; n ; n+1 là 3 số nguyên liên tiếp nên sẽ có 1 số chia hết cho 2 và một số chia hết cho 3
=> (n-1)n(n+1) chia hết cho 2 và 3
=> (n-1)n(n+1) chia hết cho 2.3
=> (n-1)n(n+1) chia hết cho 6 (đpcm)
nếu n là chẵn thì (4+n) là chẵn thì (4+n)(5+n)*2
nếu n là lẻ thì 5+n là chẵn thì (4+n)(5+n)*2
vậy với mọi n thì tích (4+n)(5+n)*2
dấu * là dấu chia hết nhé
n^3-n=n(n^2-1)=n(n-1)(n+1)
ta thay n-1;n;n+1 la 3 STN lien tiep
ma h cua 3 STN lien tiep luon chia het cho 2 va
Vay...
good luck
Tham khảo
https://olm.vn/hoi-dap/tim-kiem?id=638956&subject=1&q=++++++++++CMR+(n4-1)+chia+het+cho+8,+v%E1%BB%9Bi+m%E1%BB%8Di+n+l%E1%BA%BB+b%E1%BA%A5t+k%C3%AC+++++++++