CMR:
\(\left[2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005\right)+1\right]\) \(⋮2005^{2007}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left\{{}\begin{matrix}\left(2x_1-3y_1\right)^{2004}\ge0\\......\\\left(2x_{2005}-3y_{2005}\right)^{2004}\ge0\end{matrix}\right.\) \(\forall x_1;x_2...x_{2005};y_1;y_2;...y_{2005}\)
Mà theo đề cho \(\left(2x_1-3y_1\right)^{2004}+...+\left(2x_{2005}-3y_{2005}\right)^{2004}\le0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x_1-3y_1\right)^{2004}=0\\\left(2x_2-3y_2\right)^{2004}=0\\.........\\\left(2x_{2005}-3y_{2005}\right)^{2004}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x_1-3y_1=0\\2x_2-3y_2=0\\........\\2x_{2005}-3y_{2005}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{3}{2}y_1\\x_2=\dfrac{3}{2}y_2\\.....\\x_{2005}=\dfrac{3}{2}y_{2005}\end{matrix}\right.\)
Từ đó ta có:
\(\dfrac{x_1+x_2+...+x_{2005}}{y_1+y_2+...+y_{2005}}=\dfrac{\dfrac{3}{2}y_1+\dfrac{3}{2}y_2+...+\dfrac{3}{2}y_{2005}}{y_1+y_2+...+y_{2005}}\)
\(=\dfrac{\dfrac{3}{2}\left(y_1+y_2+...+y_{2005}\right)}{y_1+y_2+...+y_{2005}}=\dfrac{3}{2}=1.5\) (đpcm)
Ghi lại đề đi bạn, nhìn qua dấu các biểu thức là biết bạn ghi sai đề rồi
a) \(\frac{2005.2007-1}{2004+2005.2006}=\frac{\left(2014+1\right).2007-1}{2004+2005.2006}=\frac{2004+2005.2007-1}{2004+2005-2006}=\frac{2004+2005.2006}{2004+2005.2006}=1\)
Sửa đề\(2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2006\right)+1=A\)
Đặt \(2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2006\right)+1=A\)
Ta có:
\(A=2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)
\(=\left(2005-1\right)\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)
\(=2005\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)\)\(-\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)
\(=\left(2005^{2007}+2005^{2006}+2005^{2005}+...+2005^2+2005\right)\)\(-\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)
\(=2005^{2007}⋮2005^{2007}\left(dpcm\right)\)