Chứng minh rằng với mọi số nguyên n thì \(n^2+11n+39\) không chia hết cho 49.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Em tham khảo tại đây nhé:
Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath
bạn sai đề rồi:
chứng minh với mọi số nguyên n thì n^2+11n+39 không chia hết cho 49
Ta có:
giả sử: A= n^2 + 11n + 39 chia hết cho 49 => A chia hết cho 7
mà : n^2 + 11n + 39 = (n+9)(n+2) +21 chia hết cho 7
=> (n+9)(n+2) chia hết cho 7
lại có: (n+9) - (n+2) = 7 nên (n+9) và (n+2) đồng thời chia hết cho 7
=>(n+9)(n+2) chia hết cho 49
mà: (n+9)(n+2) +21 chia hết cho 49
=> 21 chia hết cho 49 vô lí => đpcm
https://vn.answers.yahoo.com/question/index?qid=20091017203207AAoSfKD
ban vao link nay thi se co cau tra loi
Đặt A=n2+11n+39
Giả sử n2+11n+39 chia hết cho 49 thì A chia hết cho 49 => A cũng chia hết cho 7
Ta có A=n2+11n+39=n2+9n+2n+18+21 = n(n+9)+2(n+9)+21 =(n+9)(n+2)+21
Nhận thấy( n+9)-(n+2)=7
=>Đồng thời (n+9) và (n+2) chia hết cho 7 => (n+9)(n+2) chia hết cho 49
Ta cũng có A chia hết cho 49 mà 21 ko chia hết cho 49 ( vô lí )
Vậy n2+11n+39 ko chia hết cho 49
giả sử: A= n^2 + 11n + 39 chia hết cho 49 => A chia hết cho 7
mà : n^2 + 11n + 39 = (n+9)(n+2) +21 chia hết cho 7
=> (n+9)(n+2) chia hết cho 7
lại có: (n+9) - (n+2) = 7 nên (n+9) và (n+2) đồng thời chia hết cho 7
=>(n+9)(n+2) chia hết cho 49
mà: (n+9)(n+2) +21 chia hết cho 49
=> 21 chia hết cho 49 vô lí => đpcm
Bài 2: A=3^ (2*n) + 3^n + 1
n không chia hết cho 3 nên ta xét 2 trường hợp:
* n =3k +1:
A = 3^ (6k + 3) + 3^(3k +1) +1= 9.27^2k +3.27^ +1
= 9.(26+1)^2k + 3.(26 +1)^k +1
= 9(2.13 +1)^2k + 3.(2.13 +1)^k +1
A đồng dư với (9 +3 +1)= 13 theo đồng dư 0 theo (mod 13)
vậy A chia hết cho 13.
( Mình giải thích thêm nhé:
(2.13 +1)^2k chia cho 13 dư 1
=> 9(2.13 +1)^2k chia cho 13 dư 9
(2.13 +1)^k chia 13 dư 1
=> 3.(2.13 +1)^k chia 13 dư 1
=> A chia 13 dư 9 + 3 +1 = 13
A = 13.k +13 với k nguyên
A/13 = k + 1 la số nguyên => A chia hết cho 13
khi triển khai (x+1)^n = thì các hạng tử đều chứa x trừ hạng tử cuối = 1 nên (x+1)^n chia cho x dư 1.)
* n = 3k +2:
A = 3^(6k +4) + 3^(6k +2) +1=81.27^2k +9.27^k +1
= 81.(2.13+1)^2k + 9(2.13 +1)^k +1
A đồng dư với ( 81 + 9 +1) = 91 đồng dư 0 theo (mod 13)
vậy A chia hết cho 13
CM bằng cách thế số vào n
Thay n=169,ta đc
1692+11.169+2=30422
Ta thấy : 30422 ko chia hết cho 12769
\(\Rightarrow\)\(n^2+11n+2\)ko chia hết cho 12769 với mọi n
Giả sử \(n^2+11n+39⋮49\) \(\Rightarrow4n^2+44n+156⋮49\)
\(\Rightarrow4n^2+44n+156⋮7\) \(\Leftrightarrow4n^2+2.2n.11+121+35⋮7\)
\(\Leftrightarrow\left(2n+11\right)^2+35⋮7\) mà \(35⋮7\) nên \(\left(2n+11\right)^2⋮7\) mà 7 là số nguyên tố
\(\Rightarrow\left(2n+11\right)^2⋮49\) \(\Rightarrow4n^2+4n+121⋮49\) mà
\(4n^2+4n+121+35⋮49\) nên \(35⋮49\) => vô lý vậy điều giả sử là sai
vậy n^2+11n+39 không chia hết cho 49