Chứng minh rằng \(16^5\) – \(2^{15}\) chia hết cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn sai đề rồi phải là 16x+26y chia hết cho 31 chứ:
3x+y chia hết cho 31
=> 27.(3x+y) chia hết cho 31
=> 27.3x+27y chia hết cho 31
=> 81x+27y chia hết cho 31
=> (62+3+16).x+(1+26).y chia hết cho 31
=> 62x+3x+16x+y+26y chia hết cho 31
=> 62x+(3x+y)+(16x+26y) chia hết cho 31
Ta thấy tổng trên chia hết cho 31, mà 62x chia hết cho 31 và 3x+y chia hết cho 31 nên 16x+26y chia hết cho 31.
Đề sai. Bạn cho $x=3; y=4$ thì $6x+11y=62$ chia hết cho $31$ nhưng $x+11y=47$ không chia hết cho $31$
A = 21 + 22 + 23 + ................ + 2120
Chứng minh chia hết cho 7
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................ + 2118.7
A = 7.(2 + 24 + ........... + 2118)
Chứng minh chia hết cho 31
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)
A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)
A = 2.31 + 26.31 + ....... + 2116 . 31
A = 31.(2 + 26 + ........... + 2116)
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
6x+11y \(⋮\)cho 31=>6(6x+11y) chia hết cho 31=>36x+66y chia hết cho 31=>31x+31y+5x+35y chia hết cho 31Vì 31(x+y) chia hết cho 31=>5(x+7y) chia hết cho 31Mà ƯCLN(5;31)=1=>x+7y chia hết cho 31
x+7y chia hết cho 31=>6(x+7y) chia hết cho 31=>6x+42y chia hết cho 31=>6x+11y+31y chia hết cho 31Vì 31y chia hết cho 31=>6x+11y chia hết cho 31
ta có : \(6\left(x+7y\right)=6x+11y+31y\)
\(6x+11y⋮31\) ; \(31y⋮31\)
\(\Rightarrow6\left(x+7y\right)⋮31\)
\(\Rightarrow x+7y⋮31\)
Ta có : 6(x+7y)-(6x+11y)=6x+42y-6x-11y=31y chia hết cho 31
Xét : 6x+11 chia hết cho 31 nên để 6(x+7y)-(6x+11y) thì 6(x+7y) chia hết cho 31
Mà (6;31)=1 ( 6 không chia hết cho 31) => x+7y chia hết cho 31
Vậy : x+7y chia hết cho 31
ĐÚNG 100% , MÌNH LÀM RỒI .TÍCH CHO MÌNH 5 TÍCH NHA !
\(16^5-2^{15}.\)
\(=\left(2^4\right)^5-2^{15}.\)
\(=2^{20}-2^{15.}\)
\(=2^{15}\left(2^5-1\right).\)
\(=2^{15}\left(32-1\right).\)
\(=2^{15}.31⋮31\left(đpcm\right).\)
Chưa kết luận nha bạn. Vậy....
Thay dấu = thành dấu <=>