Cho tam giác ABC có diện tích bằng 126 m2. Trên BC kaasy E sao cho BE=2EC. Trên AB lấy D sao cho AD=DB. Trên CA lấy F sao cho CF=3FA. Các đoạn thẳng CD, BF, AE cắt nhau tại M,N,P. Tính diện tích MNP.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CPE = 1/3 CPB = 1/3 CPA=1/4 CAE=1/8 ABC
BND=1/2 BNA=1/6 BNC=1/7 BCD=1/14ABC
AMF=1/4 AMC=1/8 ABM= 1/9 ABF=1/36 ABC
AMND=ABF – BND – AMF
=1/4 ABC = 1/14 ABC = 1/36 ABC= 7/42 ABC
BEPD= BCD = CPE
= ½ ABC – 1/8 ABC = 3/8 ABC
MNP = ABC – AEC – BEPD – AMND
= ABC – 1/3 ABC – 3/8 ABC – 7/42 ABC
= 1/8 ABC
Ta có : \(S_{MNP}=S_{ABC}-S_{APC}-S_{CBM}-S_{ABN}\)
\(S_{APC}+S_{PEC}=S_{AEC}=\frac{1}{3}S_{ABC}\)
\(\Rightarrow S_{AEC}=\frac{1}{3}.126=42\left(cm^2\right)\)
Kẻ \(AH\perp CD,EK\perp CD\left(H,K\in CD\right)\)
Ta có : \(\frac{AH.DC}{2}==S_{ADC}=S_{BDC}=3.S_{DEC}=\frac{3}{2}.EK.DC\)
\(\Rightarrow AK=3EK\Rightarrow S_{ADC}=3S_{EPC}\)
\(\Rightarrow S_{EPC}=\frac{1}{4}S_{AEC}=\frac{1}{4}.42=10,5\left(cm^2\right)\)
\(\Rightarrow S_{APC}=42-10,5=31,5\left(cm^2\right)\)
Mà \(S_{CBM}=S_{BCD}-S_{BMD}\)
Tương tự
\(S_{BCD}=\frac{1}{2}.S_{ABC}=\frac{1}{2}.126=63\left(cm^2\right)\)
\(S_{BMC=54cm^2,}S_{ABN}=28cm^2\)
\(\Rightarrow S_{MNP}=126-31,5-54-28=12,5\left(cm^2\right)\)
a/ Kẽ AG, DH lần lược vuông góc với BC tại G,H. BI, EJ lần lược vuông góc với AC tại I,J. CK, FL lần lược vuông góc với AB tại K,L
Tính \(S_{BCD}\)
Ta có: AG // DH
\(\Rightarrow\frac{DH}{AG}=\frac{BD}{BA}=\frac{1}{2}\)
\(\Rightarrow\frac{S_{BCD}}{S_{ABC}}=\frac{\frac{1}{2}.DH.BC}{\frac{1}{2}.AG.BC}=\frac{1}{2}\)
\(\Rightarrow S_{BCD}=\frac{S_{ABC}}{2}=\frac{126}{2}=63\)
Tính \(S_{CAE}\)
Ta có: EJ // BI
\(\Rightarrow\frac{EJ}{BI}=\frac{EC}{CB}=\frac{1}{3}\)
\(\Rightarrow\frac{S_{CAE}}{S_{ABC}}=\frac{\frac{1}{2}.EJ.AC}{\frac{1}{2}.BI.AC}=\frac{1}{3}\)
\(\Rightarrow S_{CAE}=\frac{S_{ABC}}{3}=\frac{126}{3}=42\)
Tính \(S_{ABF}\)
Ta có: FL // CK
\(\Rightarrow\frac{FL}{CK}=\frac{AF}{AC}=\frac{1}{4}\)
\(\Rightarrow\frac{S_{ABF}}{S_{ABC}}=\frac{\frac{1}{2}.FL.AB}{\frac{1}{2}.CK.AB}=\frac{1}{4}\)
\(\Rightarrow S_{ABF}=\frac{S_{ABC}}{4}=\frac{126}{4}=31,5\)
b/ Kẽ AQ, ER lần lượt vuông góc với DC tại Q,R
Ta có: \(S_{ACD}=S_{ABC}-S_{BCD}=126-63=63=S_{BCD}\)
\(\Rightarrow\frac{S_{ACD}}{S_{ECD}}=\frac{S_{BCD}}{S_{ECD}}=\frac{\frac{1}{2}.h_B.DC}{\frac{1}{2}.h_E.DC}=3\)
Xét \(\Delta ENP\approx\Delta AMP\)(\(\approx\)là đồng dạng)
\(\Rightarrow\frac{EP}{AP}=\frac{ER}{AQ}=\frac{S_{ECD}}{S_{ACD}}=\frac{1}{3}\)
\(\Rightarrow AP=3PE\)
Tương tự ta có:
\(\frac{BM}{MF}=?\)
\(\frac{CN}{ND}=??\)
c/ Ta có:
\(\frac{S_{CPE}}{S_{CAE}}=\frac{\frac{1}{2}.h_P.EC}{\frac{1}{2}.h_A.EC}=\frac{EP}{EA}=\frac{1}{4}\)
\(\Rightarrow S_{CPE}=\frac{S_{CAE}}{4}=\frac{42}{4}=10,5\)
Tương tự \(\Rightarrow S_{BND}\)và \(S_{AMF}\)
\(S_{MNP}=S_{BDC}+S_{CAE}+S_{ABF}-S_{BND}-S_{CPE}-S_{AMF}\)