K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

Bài 1:

\(A=7^3+7^4+7^5+...+7^{97}+7^{98}.\)

\(A=\left(7^3+7^4\right)+\left(7^5+7^6\right)+...+\left(7^{97}+7^{98}\right).\)

\(A=7^3\left(1+7\right)+7^5\left(1+7\right)+...+7^{97}\left(1+7\right).\)

\(A=7^3.8+7^5.8+...+7^{97}.8.\)

\(A=\left(7^3+7^5+...+7^{97}\right).8⋮8\left(đpcm\right).\)

Vậy.....

Bài 2: Tìm x:

\(3^{47}:\left(189-3x\right)=3^{44}.\)

\(189-3x=3^{47}:3^{44}.\)

\(189-3x=27.\)

\(3x=189-27.\)

\(3x=162.\)

\(x=162:3.\)

\(x=54.\)

Vậy.....

\(27-3.\left(5x+2\right)=6.\)

\(3.\left(5x+2\right)=27-6.\)

\(3.\left(5x+2\right)=21.\)

\(5x+2=21:3.\)

\(5x+2=7.\)

\(5x=7-2.\)

\(5x=5.\)

\(x=5:5.\)

\(x=1.\)
Vậy.....

27 tháng 12 2017

\(A=7^3+7^4+...+7^{98}\\ \Rightarrow A=\left(7^3+7^4\right)+\left(7^5+7^6\right)+....+\left(7^{97}+7^{98}\right)\\ =7^3\left(1+7\right)+7^5\left(1+7\right)+...+7^{97}\left(1+7\right)\\ =7^3.8+7^5.8+...+7^{97}.8\\ =8\left(7^3+7^5+...+7^{97}\right)⋮8\)

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

22 tháng 12 2017

A = 73 + 74 + 75 + 76 + ... + 797 + 798

A = ( 73 + 74 ) + ( 75 + 76 ) + .... + ( 797 + 798 )

A = 73 . ( 1 + 7 ) + 75 . ( 1 + 7 ) + ... + 797 . ( 1 + 7 )

A = 73 . 8 + 75 . 8 + .... + 797 . 8

A= 8 . ( 73 + 75 + ..... + 797 \(⋮8\)

Vậy A \(⋮8\)( dpcm )

25 tháng 7 2017

1. Ta có: A = 2^1+ 2^2 +2^3+2^4+....2^10

A= ( 2^1 + 2^2) + ( 2^3+2^4) +....( 2^9+ 2^10)

A= 3.( 2^1+2^3+2^5+...+2^1005)

Do 3 \(⋮\)3 => A\(⋮\)3

Ta có: A =.....

A= Ghép 3 số lại

A= 7. (2^1+ 2^4+...+2^670)

Do 7 \(⋮\)7 => A \(⋮\)7

2;3;4 đều ghép 2 hoặc 3 số như tke và phần trog ngoặc cx y hệt như tke, ko thay đổi

Duyệt nhanh....

NM
6 tháng 10 2021

câu b,c có nhầm không bạn nhỉ 

undefined