Cho tam giác ABC. Vẽ điểm D đối xứng với B qua A, vẽ điểm E đối xứng với C qua A. Gọi M là điểm nằm giữa B và C. Tia MA cắt DE tại N. Chứng minh MC = NE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý: BEDC là hình bình hành
Ta có: DEAN = DCAM (g - c - g) Þ NE = MC
Xét tứ giác EDCB có
A là trung điểm chung của EC và BD
nen EDCB là hình bình hành
SUy ra: ED//CB và ED=CB
Xét ΔANE và ΔAMC có
góc NEA=góc MCA
AE=AC
góc NAE=góc MAC
Do đó: ΔANE=ΔAMC
=>NE=MC
Bài1:
Xét tứ giác EDCB có
A là trung điểm chung của EC và DB
nên EDCB là hình bình hành
Suy ra: ED//BC và ED=BC
Xét ΔENA và ΔCMA có
góc EAN=góc CAM
AE=AC
góc AEN=góc ACM
Do đó: ΔENA=ΔCMA
=>EN=CM
a: M đối xứng D qua AB
=>AB là trung trực của MD
=>AM=AD
=>AB là phân giác của góc MAD(1)
M đối xứng E qua AC
=>AC là trung trực của ME
=>AM=AE
=>AC là phân giác của góc MAE(2)
Từ (1), (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
b: Xét ΔMED có
MA là trung tuyến
MA=DE/2
=>ΔMED vuông tại M
c: Xét ΔAMB va ΔADB có
AM=AD
góc MAB=góc DAB
AB chung
=>ΔAMB=ΔADB
=>góc ADB=90 độ
=>BD vuông góc DE(3)
Xét ΔAMC và ΔAEC có
AM=AE
MC=EC
AC chung
=>ΔAMC=ΔAEC
=>góc AEC=90 độ
=>CE vuông góc ED(4)
Từ (3), (4) suy ra DB//CE
Xét tứ giác EDCB có
A là trung điểm của đường chéo EC
A là trung điểm của đường chéo BD
Do đó: EDCB là hình bình hành
Xét ΔACM và ΔAEN có
\(\widehat{ACM}=\widehat{AEN}\)
AC=AE
\(\widehat{CAM}=\widehat{EAN}\)
Do đó: ΔACM=ΔAEN
Suy ra: MC=NE