K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

\(P=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(P=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(P=\left(x^2+5x\right)^2\ge-36\)

\(\Rightarrow GTNN\) của \(P=-36\)

Dấu = sảy ra khi:\(x^2+5x=0\)

.....................\(\Rightarrow x=0\) hoặc \(x=-5\)

16 tháng 11 2016

Ta có \(\left|2x+5\right|+\left|2x-3\right|\) >= |2x +5 - 2x +3| =|8| =8

dấu "=" xảy ra \(\Leftrightarrow\) (2x+5)(2x-3)>0

Lập bảng xét dấu:

x -2,5 1,5

2x + 5 - 0 + | +

2x -3 - | - 0 +

Tích + 0 - 0 +

<=> X < -2,5

Và X > 1,5

Vây min D = 8 <=> x <-2,5 và x >1,5

12 tháng 1 2015

Ta thấy:      |x-10| >= 0      (1);          |x-10| >= 0        (2)

Cộng 2 bđt cùng chiều (1) và (2) ta được:   |x-10| + |x-10| >= 0    <=>  A= |x-10| + |x-10| -2 >= -2

=> minA = -2  

Dấu đẳng thức xảy ra khi và chỉ khi x=10 và y=-100

 Chắc v!! =)))

      

5 tháng 9 2015

\(=8x+6x^2-12-9x\)

\(=6x^2-x-12=\left(-6\right)\left(-x^2+\frac{1}{6}x+2\right)\)

\(=\left(-6\right)\left[-x^2-2.\frac{1}{12}.\left(-x\right)+\left(\frac{1}{12}\right)^2-\left(\frac{1}{12}\right)^2+2\right]\)

\(=\left(-6\right)\left[\left(-x-\frac{1}{12}\right)^2+\frac{287}{144}\right]\)

\(=\left(-6\right)\left(-x-\frac{1}{12}\right)^2-\frac{287}{24}\ge-\frac{287}{24}\)

Vậy Min biểu thức = \(-\frac{287}{24}\) khi \(\left(-x-\frac{1}{12}\right)^2=0\Rightarrow-x-\frac{1}{12}=0\Rightarrow-x=\frac{1}{12}\Rightarrow x=-\frac{1}{12}\)

15 tháng 10 2021

\(A=139\)

\(\Leftrightarrow720:\left(x-6\right)=40\)

\(\Leftrightarrow x-6=18\)

hay x=24

15 tháng 10 2021

còn 1 câu nữa ạ:((

AH
Akai Haruma
Giáo viên
24 tháng 3 2023

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=(|2x-4|+|2x-8|)+|2x-6|=(|2x-4|+|8-2x|)+|2x-6|$

$\geq |2x-4+8-2x|+|2x-6|$

$=4+|2x-6|\geq 4$
Vậy $A_{\min}=4$. Giá trị này đạt tại \(\left\{\begin{matrix} (2x-4)(8-2x)\geq 0\\ 2x-6=0\end{matrix}\right.\Leftrightarrow x=3\)

25 tháng 3 2023

cảm ơn cô

 

 

28 tháng 8 2017

Với mọi x ta có: |x| ≥ x; dấu “=” xảy ra khi x ≥ 0. Do đó:

B = |x − 1| + |x − 2| + |3 − x| + |5 − x|

⇒ B ≥ x – 1 + x – 2 + 3 – x + 5 – x = 5

Dấu ''='' xảy ra khi và chỉ khi

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Vậy với 2 ≤ x ≤ 3 thì B đạt giá trị nhỏ nhất là 5.

7 tháng 9 2016

Vì \(x\ge0\forall x\in R\)

=) \(x+\frac{3}{4}\ge\frac{3}{4}\forall x\in R\)

Dấu "=" xảy ra khi và chỉ khi : \(x+\frac{3}{4}=0\)

                                               \(\Rightarrow x=-\frac{3}{4}\)

Vậy GTNN của \(A=\left|x+\frac{3}{4}\right|\) = 0 khi và chỉ khi \(x=-\frac{3}{4}\)

21 tháng 4 2018

Ta có:

|x – 3| + |x – 7| = |x – 3| + |7 – x| ≥ |x – 3 + 7 – x| = |4| = 4.

(áp dụng bài 140: |x| + |y| ≥|x + y|)

* Lại có: |x – 5| ≥ 0.

Vậy A = |x – 3| + |x – 5| + |x – 7| ≥ 4 + 0 = 4.

Dấu ''='' xảy ra khi và chỉ khi: Giải sách bài tập Toán 7 | Giải sbt Toán 7 , tức là x = 5.

Vậy với x = 5 thì A đạt giá trị nhỏ nhất là 4.

24 tháng 6 2019

Theo BDDT trị tuyệt đối\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|=\left(\left|x-1\right|+\left|5-x\right|\right)+\left(\left|x-2\right|+\left|3-x\right|\right)\)\(\ge\left|x-1+5-x\right|+\left|x-2+3-x\right|=5\)

=> Min B=5 

Dấu bằng xảy ra khi \(\hept{\begin{cases}\left(x-2\right)\left(3-x\right)\ge0\\\left(x-1\right)\left(5-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}2\le x\le3\\1\le x\le5\end{cases}\Leftrightarrow}2\le x\le3}\)

24 tháng 6 2019

Ta có :

\(B=|x-1|+|x-2|+|3-x|+|5-x|\)

\(\Rightarrow B\ge x-1+x-2+3-x+5-x=5\)

Dấu ''='' xảy ra khi và chỉ khi
\(x-1\ge0\Leftrightarrow x\ge1\)
\(x-2\ge0\Leftrightarrow x\ge2\)\(3-x\ge0\Leftrightarrow x\le3\)
\(5-x\ge0\Leftrightarrow x\le5\)\(\Leftrightarrow2\le x\le3\)

Vậy với 2 ≤ x ≤ 3 thì B đạt giá trị nhỏ nhất là 5.