1.Cho ΔABC vuông tại A có \(\widehat{C}\)=\(20^0\). Kẻ tia AH ⊥ BC tại H. Trên tia HC lấy điểm D sao cho HD=HB.
a)Tính \(\widehat{B}\)của ΔABC.
b)C/m: AD=AB.
c)Đường thẳng qua D song song với AB cắt đường thẳng AH tại E. C/m: H là trung điểm của AE.
2.Cho ΔABC, vẽ AH vuông góc BC (H thuộc BC), gọi m là trung điểm cả BC. Tren tia đối của tia HA lấy điểm E sao cho HE=HA. Trên tia đối của tia MA lấy điểm F sao cho MF=MA. Chứng minh:
a)ME=MF b)BE=CF c)AC song song BF d)EF song song BC.
3.Cho ΔHIK có \(\widehat{H}\)=\(46^0\), \(\widehat{I}\)=\(72^0\). Tia phân giác của \(\widehat{K}\) cắt HI tại M. Tính số đo \(\widehat{HKM;}\widehat{KMI}\)
GIÚP MÌNH VỚI NHA .ĐỀ CƯƠNG ĐÓ
1)
Xét \(\Delta ABC\) có
\(A+B+C=180^0\)
\(90^0+B+20^0=180^0\Rightarrow B=70^0\)