A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.2}+...+\dfrac{1}{99.100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
`1/1-1/2`
`=2/2-1/2`
`=1/2`
b)
`1/(1*2)+1/(2*3)`
`=1/1-1/2+1/2-1/3`
`=1/1-1/3`
`=3/3-1/3`
`=2/3`
c)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)
d)
\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?
\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(=\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{100-99}{99.100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\\ =1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+......+\left(-\dfrac{1}{99}+\dfrac{1}{99}\right)-\dfrac{1}{100}\\ =1-\dfrac{1}{100}\\ =\dfrac{100-1}{100}=\dfrac{99}{100}\)
Ta có :
\(\dfrac{1}{1.2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4}\)
\(...\)
\(\dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow\) biểu thức chỉ còn :
\(1-\dfrac{1}{100}=\dfrac{99}{100}\)
Ta có: \(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
\(P=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ P=1-\dfrac{1}{100}\\ P=\dfrac{99}{100}\)
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
bn ghi thêm dẫu = zô trc dùm mình ha
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1/1 - 1/100
= 99/100
Học từ lớp 4 rồi :V
A=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\dfrac{1}{1}-\dfrac{1}{100}\)
=\(\dfrac{99}{100}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.........+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+........+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)