Câu 1:
A=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
Rút gọn A
Câu 2:
A=\(\dfrac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}\) Biết tử số có 2016 dấu căn, mẫu số có 2015 dấu căn. Chứng minh A<\(\dfrac{1}{4}\)
Câu 3:Cho 3 số dương x, y, z thỏa măn điều kiện: xy+yz+xz=1
Tính A=\(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Mọi người làm nhanh nha, mai mình kt 1 tiết rồi
3) Gợi ý: Thay 1=xy+yz+xz
\(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\dfrac{\left(y^2+xy+yz+xz\right)\left(z^2+xy+yz+xz\right)}{x^2+xy+yz+xz}}=x\sqrt{\dfrac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+z\right)\left(x+y\right)}}=x\sqrt{\left(y+z\right)^2}=x\left(y+z\right)\)
Tương tự rồi cộng vào
@Ribi Nkok Ngok