Câu 1: Cho tam giác ABC. Trên tia đối của tia CB lấy điểm M sao cho CM = CB. Trên tia đối của tia CA lấy điểm D sao cho CD = CA
a) Chứng minh tam giác ABC bằng tam giác DMC
b) Chứng minh MD // AB
c) Gọi I là một điểm nằm giữa A và B. Tia CI cắt MD tại điểm N. So sánh độ dài các đoạn thẳng BI và NM, IA và ND
Câu 2 : Cho tam giác ABC có AB = AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD
a) Chứng minh tam giác ABM bằng tam giác DCM
b) Chứng minh MD // AB
c) Chứng minh AM vuông góc với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC và tam giác DMC , ta có :
CB = CM ( gt )
Góc ACB = góc DCM ( hai góc đối đỉnh )
CA = CD ( gt )
=> Tam giác ABC = tam giác DCM ( c.g.c )
b) Ta có : Tam giác ABC = tam giác DCM ( Theo phần a )
=> Góc ABC = góc DCM ( hai góc tương ứng )
Mà hai góc này ở vị trí so le trong => AB song song MD ( đpcm )
Answer:
a. Xét tam giác ABC và tam giác DMC
CA = CD
CB = CM
Góc ACB = góc DCM
=> Tam giác ABC = tam giác DMC (c.g.c)
b. Từ chứng minh ở phần a) => Góc ABC = góc CDM hay góc BAD = góc ADM
Mà hai góc ở vị trí so le trong
=> AB//MB
c. bạn thông cảm, ý này mình không biết làm ^^.
\(a,\left\{{}\begin{matrix}AC=CM\\BC=CN\\\widehat{ACB}=\widehat{MCN}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta ABC=\Delta MNC\left(c.g.c\right)\\ b,\Delta ABC=\Delta MNC\Rightarrow\widehat{ABC}=\widehat{CNM}\)
Mà 2 góc này ở vị trí so le trong nên AB//MN
\(c,\left\{{}\begin{matrix}AC=CM\\BC=CN\\\widehat{ACN}=\widehat{BCM}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta ACN=\Delta MCB\left(c.g.c\right)\\ \Rightarrow AN=BM\)
a: Xét ΔABC và ΔDEC có
CA=CD
\(\widehat{ACB}=\widehat{DCE}\)
CB=CE
Do đó:ΔACB=ΔDCE
b: Xét tứ giác ABDE có
C là trung điểm của AD
C là trung điểm của BE
Do đó: ABDE là hình bình hành
Suy ra: AB//DE
c: Xét ΔAMC và ΔDNC có
AM=DN
\(\widehat{MAC}=\widehat{NDC}\)
AC=DC
Do đó: ΔAMC=ΔDNC
d: Xét tứ giác AMDN có
AM//DN
AM=DN
Do đó: AMDN là hình bình hành
Suy ra: Hai đường chéo AD và MN cắt nhau tại trung điểm của mỗi đường
mà C là trung điểm của AD
nên C là trung điểm của MN
https://hoc24.vn/cau-hoi/1cho-tam-giac-abc-co-2-duong-trung-tuyen-bm-va-cn-cat-nhau-tai-g-chung-minh-bm-cn-dfrac32bc2cho-tam-giac-abc-d-la-trung-diem-ac-tren-bd-lay-e-sao-cho-be2ed-f-thuoc-tia-doi-cua-tia.5863553679489
trl câu này hộ mik với chiều nay cần dùng r
2: Xét tứ giác ABDE có
C là trung điểm của BE
C là trung điểm của AD
Do đó: ABDE là hình bình hành
Suy ra: AB//DE
a) xét tam giác ABC và tam giác DMC có:
CA=CD
góc ACB= góc DCM ( đối đỉnh)
BC=CM
=> tam giác ABC=tam giác DMC (c.g.c)
b) theo a) tam giác ABC=tam giác DMC=> góc A= góc D
mà đây là 2 góc so le trong nên MD//AB
c) Xét tam giác ICB và tam giác NCM có:
góc B= góc M ( tam giác ABC= tam giác DMC)
BC=MC
góc ICB= góc NCM ( đối đỉnh)
=> tam giác ICB= tam giác NCM( g.c.g)
=> IB=MN
Mà AB=MD ( tam giác ABC= tam giác DMC)
=> AB-IB= MD-MN
=> AI=ND
xét tg ABC và tg EDC có
BC = EC ( gt )
góc BCA = góc DCE ( 2 góc đối đỉnh )
AC = DC
ABC = EDC
suy ra góc BAC = góc CDE = 90 độ
bạn chép tạm nha, những câu còn lại mình đang làm nha
Câu 2:
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
DO đó: ABDC là hình bình hành
Suy ra: AB//DC
c: ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao