a,Cho B = 1/2+1/2^2+1/2^3+...+1/2^99. So sánh B với 1
b, Cho C = 1/3+(1/3)^2+(1/3)^2+(1/3)^3+...+(1/3)^99. CMR C < 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = 1/3 + 1/3^2 + 1/3^3 + ... =1/3^99
=> C = 1/3^99 = 1/(3^99)
=> C < 1/2 (đpcm)
2A=2^101-2^100+2^98+...+2^3-2^2
3A = 2A + A
3A = 2^101 - 2 ( Cứ tính là ra , âm vs dương triệt tiêu )
A = (2^101-2) :3
B tăng tự
a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)
\(A=1-\frac{1}{2^{50}}
\(\frac{C}{3}=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\)
\(\frac{2C}{3}=C-\frac{C}{3}=\frac{1}{3}-\frac{1}{3^{100}}\)
\(2C=1-\frac{1}{3^{99}}\Rightarrow C=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}\)
Vì: B=12 + 22 + ... + 992 = 1.1+2.2+3.3+...+99.99
Do đó: B+C= 1.(1+1)+2.(2+1)+3.(3+1)+...+99.(99+1)
= 1 . 2 + 2 . 3 + ... + 99 . 100
Vậy: A=B+C
ta có: 2B=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
B=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+..+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
=>2B-B=\(1-\frac{1}{2^{99}}\)
mà 1/2^99>0 nên B<1 (đpcm)