1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.
L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).
Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.
a) Chứng minh A, L, K thẳng hàng
b) Chứng minh HL vuông góc với AK
3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.
Chứng minh M, H, K thẳng hàng
4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.
Tìm vị trí của K trên BC để BC, EF, HL đồng quy.
Người hay giúp bạn khác trả lời bài tập sẽ trở thành học sinh giỏi. Người hay hỏi bài thì không. Còn bạn thì sao?
Không giúp được thì thôi. Im mồm