Cho hàm số y=(8m - 16)x+21
a) Tìm m để hàm số đã cho là hàm số bậc nhất ?
b) Tìm m để hàm số đồng biến ?
c)Tìm m để hàm số nghịch biến ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
) Điều kiện để hàm số xác định là m≥0m≥0; x∈Rx∈R
Để hàm số đã cho là hàm bậc nhất thì m√+3√m√+5√≠0m+3m+5≠0
Vì m−−√+3–√≥0+3–√>0m+3≥0+3>0 với mọi m≥0m≥0 nên m−−√+3–√≠0,∀m≥0m+3≠0,∀m≥0
⇒m√+3√m√+5√≠0⇒m+3m+5≠0 với mọi m≥0m≥0
Vậy hàm số là hàm bậc nhất với mọi m≥0m≥0
b)
Để hàm đã cho nghịch biến thì m√+3√m√+5√<0m+3m+5<0
Điều này hoàn toàn vô lý do {m−−√+3–√≥3–√>0m−−√+5–√≥5–√>0{m+3≥3>0m+5≥5>0
Vậy không tồn tại mm để hàm số đã cho nghịch biến trên R
Giải thích các bước giải:
a) Để hàm số đã cho là hàm bậc nhất thì
b) Để hàm số đã cho đồng biến trên tập xác định thì :
c) Để hàm số đã cho nghịch biến trên tập xác định thì:
a) Để hàm số là hàm số bậc nhất thì \(2-m\ne0\)
\(\Leftrightarrow m\ne2\)
b) Để hàm số đồng biến thì 2-m>0
hay m<2
c) Để hàm số nghịch biến thì 2-m<0
hay m>2
a) Ta có \(y=mx+m-2x=\left(m-2\right)x+m\)
Như vậy để y là hàm số bậc nhất thì \(m-2\ne0\Leftrightarrow m\ne2\)
b) Để y là hàm số nghịch biến thì \(m-2< 0\Leftrightarrow m< 2\)
c) Để y là hàm số đồng biến thì \(m-2>0\Leftrightarrow m>2\)
a, Để hs là hàm bậc nhất thì a\(\ne\)0
<=> m-2\(\ne0< =>m\ne2\)
b, để hs đồng biến thì a>0
<=> m-2>0<=>m>2
để hs nghichj biến thì a<0
<=> m-2<0<=>m<2
a) Hàm số đồng biến trên R\(\Rightarrow a>0\Rightarrow m-2>0\Rightarrow m>2\)
b) Hàm số nghịch biến trên R
\(\Leftrightarrow a< 0\Rightarrow m-2< 0\Rightarrow m< 2\)
Mn giúp e với ak
Mik gửi cái khác đây ak