K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

a: Xét ΔOBA và ΔOCA có

OB=OC

AB=AC

OA chung

Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)

=>AC\(\perp\)OC

=>AC là tiếp tuyến của (O)

b:ta có: AB=AC

OB=OC

Do đó: AO là đường trung trực của BC

=>AO\(\perp\)BC(1)

Xét (O) có

ΔBCE nội tiếp

BE là đường kính

Do đó: ΔBCE vuông tại C

=>BC\(\perp\)CE(2)

Từ (1) và (2) suy ra OA//CE

a: Xét ΔOBA và ΔOCA có

OB=OC

BA=CA

OA chung

Do đó: ΔOBA=ΔOCA

=>góc OCA=90 độ

=>AC là tiếp tuyến của (O)

b: Xét (O) có

ΔBCE nội tiếp

BE là đường kính

Do đó; ΔBCE vuông tại C

=>BC vuông góc với CE

AB=AC

OB=OC

=>AO là trung trực của BC

=>AO vuông góc với BC

=>AO//CE

a: Xét ΔOBA và ΔOCA có 

OB=OC

OA chung

BA=CA

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}\)

\(\Leftrightarrow\widehat{OCA}=90^0\)

hay AC\(\perp\)OC tại C

Xét (O) có

OC là bán kính

AC\(\perp\)OC tại C

Do đó: AC là tiếp tuyến của (O)

b: Ta có: OB=OC

nên O nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2)suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC(3)

Xét (O) có

ΔBCE nội tiếp đường tròn

BE là đường kính

Do đó: ΔBCE vuông tại C

hay BC\(\perp\)CE(4)

Từ (3) và (4) suy ra CE//OA

3 tháng 9 2021

cậu làm hộ tớ câu b,c được không

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Theo hình vẽ thì đề không đúng. Bạn coi lại

Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm

AC là tiếp tuyến có C là tiếp điểm

Do đó: AB=AC

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC(3)

Xét (O) có

ΔBCE nội tiếp đường tròn

BE là đường kính

Do đó: ΔBCE vuông tại C

Suy ra: BC\(\perp\)CE(4)

từ (3) và (4) suy ra OA//CE

15 tháng 12 2017

O A B C D E H F

a) Do D thuộc đường tròn (O), AB là đường kính nên \(\widehat{BDC}=90^o\Rightarrow BD\perp AC\)

Xét tam giác vuông ABC, đường cao BD ta có:

\(AB^2=AD.AC\)  (Hệ thức lượng)

b) Xét tam giác BEC có O là trung điểm BC; OH // CE nên OH là đường trung bình của tam giác. Vậy nên H là trung điểm BE.

Ta có OH // CE mà CE vuông góc AB nên \(OH\perp BE\)

Xét tam giác ABE có AH là trung tuyến đồng thời đường cao nên nó là tam giác cân.

Hay AB = AE.

Từ đó ta có \(\Delta ABO=\Delta AEO\left(c-c-c\right)\Rightarrow\widehat{OEA}=\widehat{OBA}=90^o\)

Vậy AE là tiếp tuyến của đường tròn (O)

c) Xét tam giác vuông OBA đường cao BH, ta có:

\(OB^2=OH.OA\) (Hệ thức lượng)

\(\Rightarrow OC^2=OH.OA\Rightarrow\frac{OH}{OC}=\frac{OC}{OA}\)

Vậy nên \(\Delta OHC\sim\Delta OCA\left(c-g-c\right)\Rightarrow\widehat{OHC}=\widehat{OCA}\)

d) Ta thấy \(\widehat{OCF}=\widehat{FCE}\left(=\widehat{OFC}\right)\)

Lại có \(\widehat{OCH}=\widehat{ACE}\left(=\widehat{OAC}\right)\)

Nên \(\widehat{HCF}=\widehat{FCA}\) hay CF là phân giác góc HCA.

Xét tam giác HCA, áp dụng tính chất đường phân giác trong tam giác, ta có:

\(\frac{HF}{FA}=\frac{HC}{CA}\Rightarrow FA.HC=HF.CA\left(đpcm\right)\)

15 tháng 12 2017

ở phần c còn cạnh nào nữa để 2 tam giác đấy đồng dạng vậy cậu

1: Xét ΔOBC có

OH vừa là đường cao, vừa là trung tuyến

=>ΔOBC cân tại O

=>OB=OC=R và OH là phân giác củagóc BOC

=>C thuọc (O)
Xét ΔOBA và ΔOCA có

OB=OC

góc BOA=góc COA

OA chung

=>ΔOBA=ΔOCA

=>góc OCA=90 độ

=>AC là tiếp tuyến của (O)

2: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM=AH*AO