K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

Áp dụng BĐT AM-GM ta có:

\(VT=\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

\(\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ac}\)

\(=8abc=VP\)

Khi \(a=b=c\)

18 tháng 12 2017

BĐT\(\Leftrightarrow\)(a+b)+(b+c)+(c+a)\(\ge\)8abc

TA có BDT cô si

a+b\(\ge\)2\(\sqrt{ab}\)

\(\Rightarrow\)(a+b)(b+c)(a+c)\(\ge\)\(2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)

Vậy (1-a)(1-b)(1-c)\(\ge\)8abc

4 tháng 1 2021

Áp dụng BĐT AM-GM:

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge2\sqrt{bc}.2\sqrt{ca}.2\sqrt{ab}=8abc\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

NV
13 tháng 2 2020

\(VT=\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(b+c\right)\left(a+c\right)\left(a+b\right)\)

\(VT\ge2\sqrt{bc}.2\sqrt{ac}.2\sqrt{ab}=8abc\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:

Vì $A+B+C=1$ ta có:

$(1-A)(1-B)(1-C)=(B+C)(C+A)(A+B)$

Áp dụng BĐT AM-GM cho các số dương:

$B+C\geq 2\sqrt{BC}; C+A\geq 2\sqrt{CA}; A+B\geq 2\sqrt{AB}$

$\Rightarrow (1-A)(1-B)(1-C)=(B+C)(C+A)(A+B)\geq 2\sqrt{BC}.2\sqrt{CA}.2\sqrt{AB}$

hay $(1-A)(1-B)(1-C)\geq 8ABC$ (đpcm)

Dấu "=" xảy ra khi $A=B=C=\frac{1}{3}$

3 tháng 5 2016

Mình trình bày hơi tắt 1 chút nhé  banhqua

Vì \(a+b+c=1\) nên \(\begin{cases}a+b=1-a\\a+c=1-b\\b+c=1-c\end{cases}\)

Ta có:

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(a+c\right)\left(b+c\right)\ge2\sqrt{ab}.2\sqrt{ac}.2\sqrt{bc}=8abc\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\) (đpcm)

3 tháng 5 2016

sao a+b+c=1 mà a+b=1-a vậy Kiệt? ,a+b=1-c chứ?

3 tháng 5 2016

\(BĐT\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dễ thấy BĐt trên đúng theo Cô si:

\(a+b\ge2\sqrt{ab}\)

Thiết lập cac BĐT tương tự và nhân lại ta có đpcm.

3 tháng 5 2016

Biết là Cô-si,...làm giùm....

23 tháng 4 2017

tui làm đc là phải tịk nha!

a+b+c=1\(\Rightarrow\)1-a=b+c;1-b=c+a;1-c=a+b \(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)=\)(a+b)(b+c)(c+a)\(\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)=8.abc\(\ge8\).dấu ''=''xảy ra khi một tong 3 số a;b;c là 1 2 số còn lại bằng 0

23 tháng 4 2017

Không có giá trị a,b,c thỏa mãn khi a.b,c là số dương và tổng bằng 1

18 tháng 7 2015

áp dụng bất đẳng thức cô-si với 2 số dương.

Ta có 

 \(a+b\ge2\sqrt{ab}\)

 \(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)(vì a,b,c dương)

4 tháng 1 2020

hack hay sao

4 tháng 1 2020

chứng minh ngắn là làm tắt

22 tháng 4 2017

Số abc là 176