K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để hai đường thẳng trùng nhau thì \(\left\{{}\begin{matrix}m-1=1-2m\\n-2=n+3\left(loại\right)\end{matrix}\right.\)

Vậy: Không có (m,n) nào để hai đường thẳng trùng nhau

Để hai đường thẳng trùng nhau thì 

\(\left\{{}\begin{matrix}m-1=1-2m\\n-2=n+3\left(loại\right)\end{matrix}\right.\)

a: Để hai đường thẳng song song thì \(\left\{{}\begin{matrix}m-1=1-2m\\n-2\ne n+3\end{matrix}\right.\Leftrightarrow3m=2\Leftrightarrow m=\dfrac{2}{3}\)

b: Để hai đường thẳng cắt nhau thì \(m-1\ne-2m+1\)

\(\Leftrightarrow3m\ne2\)

hay \(m\ne\dfrac{2}{3}\)

11 tháng 12 2021

\(1,\Leftrightarrow m=2m+1\Leftrightarrow m=-1\\ 2,\Leftrightarrow a=-5\)

11 tháng 12 2021

2: a=-5

10 tháng 12 2020

1. Để 2 đồ thị hàm số đã cho là hai đường thẳng song song thì

\(\left\{{}\begin{matrix}m+1=2m+1\\2m\ne3m\end{matrix}\right.\left(ĐK:m\ne-1,-\dfrac{1}{2}\right)\)

Hệ phương trình tương đương với:

\(\left\{{}\begin{matrix}m=0\\m\ne0\end{matrix}\right.\Rightarrow\text{Hệ\:phương\:trình\:vô\:nghiệm}\)

Vậy không tồn tại giả trị m để đồ thị của hai hàm số trên song song.

2. Để giao điểm hai đồ thì nằm trên trục hoành thì y = 0.

\(y=\left(m+1\right)x+2m=0\Rightarrow x=-\dfrac{2m}{m+1}\) (1)

\(y=\left(2m+1\right)x+3m=0\Rightarrow x=-\dfrac{3m}{2m+1}\) (2)

và \(m+1\ne2m+1\Rightarrow m\ne0\) (3)

Từ (1) và (2) và (3) ta tìm được m = 1.

10 tháng 12 2020

nhầm 1 chỗ nha:

"và \(m+1\ne2m+1\Rightarrow m\ne0\) (3) " 

Như vậy mới du91g.

a: Để hai đồ thị song song thì \(\left\{{}\begin{matrix}2m-3=m\\n-2\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n\ne5\end{matrix}\right.\)

 

b: Để hai đồ thị cắt nhau thì \(2m-3\ne m\)

hay \(m\ne3\)

23 tháng 12 2021

a: Để hàm số là hàm số bậc nhất thì 2m-3<>0

hay m<>3/2

b: Để hàm số đồng biến thì 2m-3>0

hay m>3/2

Để hàm số nghịch biến thì 2m-3<0

hay m<3/2