cho tam giác abc vuông tại a, đường cao ah. gọi m, n theo thứ tự là các điểm đối xứng của h qua ab và ac a)cm ab là đường phân giác của góc mah của tam giác amh b)cm a là trung điểm của đoạn mn c)cm bc=bm+cn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: H và D đối xứng nhau qua AB
nên AB là đường trung trực của HD
Suy ra: AH=AD
Xét ΔAHD có AH=AD
nên ΔAHD cân tại A
mà AB là đường trung trực ứng với cạnh đáy HD
nên AB là tia phân giác của \(\widehat{HAD}\)
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
Suy ra: AH=AE
Xét ΔAEH có AH=AE
nên ΔAEH cân tại A
mà AC là đường trung trực ứng với cạnh đáy HE
nên AC là tia phân giác của \(\widehat{EAH}\)
Ta có: \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)
\(=2\cdot\left(\widehat{CAH}+\widehat{BAH}\right)\)
\(=2\cdot90^0=180^0\)
Suy ra: E,A,D thẳng hàng
mà AE=AD(=AH
nên A là trung điểm của ED
a: Ta có: H và M đối xứng nhau qua AB
nên AB là đường trung trực của MH
Suy ra: AM=AH
Xét ΔAMH có AM=AH
nên ΔAMH cân tại A
mà AB là đường trung trực ứng với cạnh đáy HM
nên AB là tia phân giác của \(\widehat{MAH}\)
b)
gọi gd của HN và AC là I
gọi gd AB và HM là K
Xét tg HAN có AN là dg trung trực của HN
=> AH=AN=> tg AHN cân tại A.
=> HAI = IAN
Vì AB là pg MAH(cmt)=> MAK =KAH
mà KAH+HAI=A=90 độ
=> MAK+IAN=90 độ
=> MAK+IAN+KAH +HAI=90+90=180 độ
=> A,M,N thẳng hàng (1)
Ta có: tg AMH cân tại A(cmt)=> AM=AH
Tg HAN cân tại A(cmt)=> AH=AN
=> AM=AN. (2)
=> A là td MN
c) xét tg MBH có BK vg góc với MH=> BK là dg cao
MK=KH=> BK là dg ttuyến
=> tg MBH cân tại B(tc tg cân)
=> MB=BH
Chứng minh tương tự cho tg HCN
=> tg HCN cân tại C(tc tg cân)
=> CH=CN
mà BH+HC=BC=> MB+CN=BC