Cho a+b=p(p là nguyên tố ; a,b là số tự nhiên). Chứng minh a;b là nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đề phải là cm p^2-1 ko nguyên tố
Vì p nguyên tố > 3 => p ko chia hết cho 3 => p^2:3 dư 1 => p^2-1 chia hết cho 3
Mà p nguyên tố > 3 => p^2-1 > 3
=> p^2-1 là hợp số
Ta thấy ab chia hết cho a với mọi a, b \(\inℕ\)và ab > a => ab không thể là số nguyên tố => a, b vô nghiệm
a) Với p = 2 thì p + 4; p + 8 không là số nguyên tố.
Với p = 3 thì p + 4; p + 8 là các số nguyên tố.
Nếu p > 3 mà p là số nguyên tố => p = 3k +1 hoặc p = 3k +2 (k ϵ N*)
Ta thấy nếu p = 3k + 1 thì p + 8 = 3k + l + 8 = 3k + 9=> p chia hết cho 3 (loại).
Ta thấy nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 => p chia hết cho 3 (loại).
Vậy ta đã chứng minh được p = 3 là giá trị duy nhất thỏa mãn điều kiện đề bài.
b) Tương tự 21A.
p = 3 là giá trị duy nhất thỏa mãn điều kiện đề bài.
b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3