K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2015

x/5 = y/7 = z/3 =>(x/5)^2= (y/7)^2 = (z/3)^2 hay x^2/25 = y^2/49 =z^2 /9  

x^2/25 = y^2/49 =z^2 /9 = (x^2 + y^2 - z^2) /(25+49 -9)=585/65 =9=3^2  

=> (x/5)^2=3^2 =>x/5 =+-3 =>x=+-15  

(y/7)^2=3^2 =>y/7 =+-3 =>y=+-21  

(z/3)^2 =3^2 =>z/3 =+-3 =>z=+-9  

vậy có 2 cặp (x;y;z) là: (15;21;9) và (-15;-21;-9)

13 tháng 10 2015

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}=\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{585}{65}=9\)

\(\Rightarrow\frac{x^2}{25}=9\Rightarrow x^2=225\Rightarrow x=15hoặc-15\)

\(\frac{y^2}{49}=9\Rightarrow y^2=441\Rightarrow y=21hoặc-21\)

\(\frac{z^2}{9}=9\Rightarrow z^2=81\Rightarrow z=9\)

18 tháng 7 2015

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) va \(x^2+y^2+z^2=585\)

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\) va \(x^2+y^2+z^2=585\)

Áp dụng tính chất day ti số bằng nhau ta có :

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{25+49+9}=\frac{585}{83}=7,048192771\)

xin mời quý khách xem lại đề nhé để sai rồj đó

18 tháng 7 2015

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{25+49+9}=\frac{585}{83}=\)số xấu 

22 tháng 7 2015

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) va \(x^2+y^2-z^2=585\)

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

Suy ra : \(\frac{x^2}{25}=9\Rightarrow x^2=9.25=225\Rightarrow x=15\) hoac \(x=-15\)

\(\frac{y^2}{49}=9\Rightarrow y^2=9.49=441\Rightarrow y=21\)hoac \(y=-21\)

\(\frac{z^2}{9}=9\Rightarrow z^2=9.9=81\Rightarrow z=9\) hoac \(z=-9\)

9 tháng 8 2017

Đún đấyg

23 tháng 8 2017

Ta có:\(\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\left(1\right)\)

          \(\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\left(2\right)\)

                  Từ (1) và (2) suy ra:\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau ta đc:

       \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{9}=-5\\\frac{y}{7}=-5\\\frac{z}{3}=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-45\\y=-35\\z=-15\end{cases}}}\)

23 tháng 8 2017

Ta có:

\(\frac{x}{y}=\frac{9}{7}\)=> \(\frac{x}{9}=\frac{y}{7}\)(1)

\(\frac{y}{z}=\frac{7}{3}\)=>\(\frac{y}{7}=\frac{z}{3}\)(2)

Từ (1) (2)

=>\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)

=>\(\frac{x}{9}=-3\)=>x=-27

    \(\frac{y}{7}=-3\)=>y=-21

     \(\frac{z}{3}=-3\)=>z=-9

Vậy x=-27 ; y=-21 ; z=-9

15 tháng 7 2015

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

suy ra:

\(\frac{x^2}{25}=9\Rightarrow x^2=225\Rightarrow x=15\)hoặc \(x=-15\)

\(\frac{y^2}{49}=9\Rightarrow y^2=441\Rightarrow y=21\)hoặc \(y=-21\)

\(\frac{z^2}{9}=9\Rightarrow z^2=81\Rightarrow z=9\)hoặc \(z=-9\)

15 tháng 7 2015

ÁP dụng dãy tỉ số bằng nhau vào là ra 

21 tháng 7 2020

Bài làm:

Ta có: \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Leftrightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{25+49+9}=\frac{585}{83}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{585.25}{83}\\y^2=\frac{585.49}{83}\\z^2=\frac{585.9}{83}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\pm5\sqrt{\frac{585}{83}}\\y=\pm7\sqrt{\frac{585}{83}}\\z=\pm3\sqrt{\frac{585}{83}}\end{cases}}\)

Số hơi xấu tí

21 tháng 7 2020

theo tính chất dãy tỉ số bằng nhau

\(\Rightarrow\frac{x}{5}=\frac{y}{7}=\frac{z}{3}=\frac{x^2+y^2+z^2}{5^2+7^2+3^2}=\frac{585}{83}\)

do đó

\(\frac{x}{5}=\frac{585}{83}\Rightarrow x=5.585:83\approx35,3\)

\(\frac{y}{7}=\frac{585}{83}\Rightarrow y=7.585:83\approx49,4\)

\(\frac{z}{3}=\frac{585}{83}\Rightarrow z=3.585:83\approx21\)

29 tháng 7 2017

hình như x^2+y^2-z^2 nếu chỗ đó dấu cộng thì rất khó tính

14 tháng 7 2021

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=>\left\{{}\begin{matrix}x=\dfrac{5y}{7}\\z=\dfrac{3y}{7}\end{matrix}\right.\) thay x,z vào \(x^2+y^2-z^2=585\)

\(=>\left(\dfrac{5y}{7}\right)^2+y^2-\left(\dfrac{3y}{7}\right)^2=585=>y=\pm21\)

\(=>\left\{{}\begin{matrix}x=\dfrac{5.(\pm21)}{7}=\pm15\\z=\dfrac{3\left(\pm21\right)}{7}=\pm9\end{matrix}\right.\)

vậy (x,y,z)\(\in\left\{\left(15;21;9\right)\left(-15;-21;-9\right)\right\}\)

28 tháng 10 2017

Ta có: \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{7^2}=\frac{z^2}{3^2}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{x^2+y^2-z^2}{65}=\frac{585}{65}=9\)

\(\Rightarrow x^2=9.5=45\Rightarrow x=\sqrt{45}\)

       \(y^2=9.7=63\Rightarrow y=\sqrt{63}\)

        \(z^2=9.3=27\Rightarrow z=\sqrt{27}\)

CHÚC BẠN HỌC TỐT!

28 tháng 10 2017

Ta có : \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}vãx^2+y^2-z^2=585\)

=> \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}=\frac{x^2+y^2-z^2}{5^2+7^2-3^2}=\frac{585}{65}=9\)

*  \(\frac{x}{5}=9\Rightarrow x=5\cdot9=45\)

*\(\frac{y}{7}=9\Rightarrow y=7\cdot9=63\)

\(\frac{z}{3}=9\Rightarrow z=3\cdot9=27\)