cho tam giac abc co ^A=90 do .ke tia phan giac goc B cat AC tai D \(\left(E\in BC\right)\) sao cho BE=BA
a, chung minh DA=DE va DE vuong goc voi BC
b, ED cat BA tai K.chung minh DF = DC
c, chung minh BD vuong goc voi FC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABD\) và \(\Delta EBD\) , ta có :
\(\widehat{BAD}=\widehat{BED}=90^0\)
\(BD\) là cạnh huyền
\(\widehat{ABD}=\widehat{EBD}\) ( vì \(BD\) là phân giác của \(\widehat{BAC}\))
Do đó : \(\Delta ABD=\Delta EBD\left(ch-gn\right)\)
\(\Rightarrow AB=BE\) ( vì hai cạnh tương ứng )
Xét \(\Delta ABD\)và \(\Delta EBD\); ta có :
Góc \(BAD=\)Góc \(BED=90^o\)
Cạnh huyền \(BD\)chung
Góc \(ABD=\)Góc \(EBD\) ( Vì BD là phân giác góc BAC )
\(\Rightarrow\Delta ABD=\Delta EBD\)(cạnh huyền - góc nhọn )
\(\Rightarrow AB=BE\)(2 cạnh tương ứng)
Vậy ...
a) Ta có: \(3^2+4^2=25\)
\(5^2=25\)
suy ra: \(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(\Delta ABC\)\(\perp\)\(A\)
b) Xét 2 tam giác vuông: \(\Delta BAD\)và \(\Delta BHD\)có:
\(\widehat{ABD}=\widehat{HAD}\) (gt)
\(BD:\)cạnh chung
suy ra: \(\Delta BAD=\Delta BHD\)(ch_gn)
\(\Rightarrow\)\(DA=DH\)(cạnh tương ứng)
c) Xét 2 tam giác vuông: \(\Delta ADE\)và \(\Delta HDC\)có:
\(AD=HD\)(cmt)
\(\widehat{ADE}=\widehat{HDC}\) (đđ)
suy ra: \(\Delta ADE=\Delta HDC\)(cgv_gn)
\(\Rightarrow\)\(DE=DC\)(cạnh tương ứng)
Hình vẽ sau nha bạn (à mà bn thông cảm nha đây là lần đầu tiên mk vè hình nên cái hình hới k chính xác nhưng mà bn cứ dựa vào đó nhé)
a)
Xét \(\Delta ABD\) và \(\Delta EBD\), có:
BA=BE ( gt )
\(\widehat{ABD}=\widehat{EBD}\) ( AD là tia phân giác của góc B)
BD: cạnh chung
Suy ra: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)
\(\Rightarrow\) \(\widehat{A}=\widehat{BED}=90^0\) ( 2 góc tương ứng)
Ta có: \(\widehat{BED}+\widehat{DEC}=180^0\) (kề bù)
hay \(90^0+\widehat{DEC}=180^0\)
\(\Rightarrow\) \(\widehat{DEC}=180^0-90^0=90^0\)
\(\Rightarrow\) \(DE\perp BC\)
b)
Ta có: \(\Delta ABD=\Delta EBD\left(cmt\right)\)
Suy ra: DA=DE ( hai cạnh tương ứng)
Xét \(\Delta DAF\) và \(\Delta DEC\) , có:
\(\widehat{FAD}=\widehat{ECD}=90^0\)
\(\widehat{ADF}=\widehat{EDC}\) (đđ)
DA=DE (cmt)
Suy ra:\(\Delta DAF=\Delta DEC\) (cạnh góc vuông - góc nhọn kề nó)
suy ra: DF=DC ( 2 cạnh tương ứng)
c)
Ta có: \(\widehat{FDM}=\widehat{BDE}\) (đđ)
\(\widehat{CDM}=\widehat{ADB}\) (đđ)
mà: \(\widehat{BDE}=\widehat{ADB}\left(\Delta ABD=\Delta EBD\right)\)
\(\Rightarrow\)\(\widehat{FDM}=\widehat{CDM}\)
Ta có: \(\Delta DAF=\Delta DEC\) (cmt)
Suy ra: DF=DC ( 2 cạnh tương ứng)
Xét \(\Delta FDM\) và \(\Delta CDM\),có:
DF=DC ( cmt )
\(\widehat{FDM}=\widehat{CDM}\left(cmt\right)\)
DM: cạnh chung
Suy ra: \(\Delta FDM=\Delta CDM\left(c-g-c\right)\)
Suy ra: \(\widehat{DMF}=\widehat{DMC}\) ( 2 góc tương ứng)
Ta lại có: \(\widehat{DMF}+\widehat{DMC}=180^0\)(kề bù)
Suy ra: \(\widehat{DMF}=\widehat{DMC}=\dfrac{180^0}{2}=90^0\)
Suy ra: \(BM\perp FC\) hay \(BD\perp FC\)