K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

hình : A B C D

ta có : \(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{BC}+\overrightarrow{CD}=\overrightarrow{AC}+\overrightarrow{BD}\)

\(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AD}+\overrightarrow{CD}=\overrightarrow{AC}+\overrightarrow{BD}\)

\(\Leftrightarrow\left(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AD}+\overrightarrow{CD}\right)^2=\left(\overrightarrow{AC}+\overrightarrow{BD}\right)^2\)

\(\Leftrightarrow AB^2+BC^2+AD^2+CD^2+2\overrightarrow{AB}.\overrightarrow{BC}+2\overrightarrow{BC}.\overrightarrow{AD}+2\overrightarrow{AD}.\overrightarrow{CD}+2\overrightarrow{CD}.\overrightarrow{AB}=AC^2+BD^2+2\overrightarrow{AC}.\overrightarrow{BD}\)

\(\Leftrightarrow AB^2+BC^2+AD^2+CD^2+2\overrightarrow{BC}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)+2\overrightarrow{CD}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)=AC^2+BD^2+2\overrightarrow{AC}.\overrightarrow{BD}\)

\(\Leftrightarrow AB^2+BC^2+AD^2+CD^2+2\overrightarrow{BC}.\overrightarrow{AC}+2\overrightarrow{CD}.\overrightarrow{AC}=AC^2+BD^2+2\overrightarrow{AC}.\overrightarrow{BD}\)

\(\Leftrightarrow AB^2+BC^2+AD^2+CD^2+2\overrightarrow{AC}\left(\overrightarrow{BC}+\overrightarrow{CD}\right)=AC^2+BD^2+2\overrightarrow{AC}.\overrightarrow{BD}\) \(\Leftrightarrow AB^2+BC^2+AD^2+CD^2+2\overrightarrow{AC}.\overrightarrow{BD}=AC^2+BD^2+2\overrightarrow{AC}.\overrightarrow{BD}\) \(\Rightarrow AB^2+BC^2+AD^2+CD^2=AC^2+BD^2\)

vậy tổng bình phương các cạch bằng tổng bình phương của 2 đường chéo (đpcm)

7 tháng 7 2016

rong hbh ABCD, xét tam giác abc 
(1): ac^2 = ab^2 + bc^2- 2.ab.bc.cosB 

=> ab^2 + bc^2=ac^2 + 2.ab.bc.cosB 

(2): vì da=bc+. da^2 + cd^2 =bc^2 +cd^2 

tương tự (1) ta có bc^2 + cd^2 = bd^2+2.bc.cd.cosC 

từ (1) và (2), ta có ab^2 + bc^2 + cd^2 + da^2=ac^2 +bd^2 + 2ab.bc.cosB + 2bc.cd.cosC 

vì: 
- góc B+C=180 => cosC = -cosB 
- ab=cd 
=>2ab.bc.cosB + 2bc.cd.cosC =0 

Vậy => ab^2 + bc^2 + cd^2 + da^2=ac^2 +bd^2 (đpcm)

8 tháng 7 2016

Bạn Carthrine ơi, mình bảo là giải bằng toán lớp 8 mà

NM
11 tháng 1 2021

giả sử ta có hình bình hành ABCD 

A B C D

ta có \(\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}\Rightarrow AC^2=AB^2+BC^2+2.AB.BC.cos\left(BAD\right)\)

\(\overrightarrow{BD}=\overrightarrow{BC}+\overrightarrow{CD}\Rightarrow BD^2=BC^2+CD^2+2BC.CDcos\left(ABC\right)\)

Nên \(AC^2+BD^2=AB^2+BC^2+CD^2+AD^2+2AB.BC.\left[cos\left(ABC\right)+cos\left(BAD\right)\right]\)

\(=AB^2+BC^2+CD^2+AD^2\)

do đó ta có điều phải chứng minh

6 tháng 11 2015

tick cho mình rồi mình giải cho

19 tháng 3 2017

trong 1 tam giác vuông có tỉ lệ 3 cạnh 

đầu tiên bình phương của cạnh huyền bạn bình phương tỉ số đó lên (rồi đánh 1 số nhỏ)

sau đó tổng bình phương 2 cạnh còn lại rồi tính ra cộng lại bằng số bình phương của cạnh huyền (đánh số 2) 

từ (1),(2) \(\Rightarrow\)tổng bình phương cạnh huyền bằng tổng bình phương 2 cạnh góc vuông 

vậy là ok rồi đó 

chúc bạn học tốt 

nhớ k nha

hhhh

22 tháng 6 2021

Gọi giao điểm 2 đường chéo AC,BD là E

Ta có: \(AB^2+CD^2=AE^2+BE^2+CE^2+DE^2\)

\(=\left(AE^2+DE^2\right)+\left(BE^2+CE^2\right)=AD^2+BC^2\)

\(\Rightarrow\) đpcm