CMR:(10^k+8^k+6^k)-(9^k+7^k+5^k) (k thuộc N*)không chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10^k + 8^k + 6^8 là chẵn
9^k + 7^k + 5^k là lẻ
mà chẵn - lẻ là lẻ
=> hiệu trên là lẻ
tương tư thì câu 2 cũng giải như vậy
a) ta có 9^k + 5^k +7^k lun lẻ còn 10^k+8^k+6^k lun chẵn mà chẵn trừ lẽ ra lẽ nên k chia hết cho 2
b) 2001^n + 2003^n lun chẵn , 2002^n lun chẵn nên cộng lại chia hết cho 2
c) tạm thời chưa ra
1)10;8;6 là số chắn nên 10k;8k;6k đều là số chẵn =>(10k+8k+6k) là số chẵn
9;7;5 là số lẻ nên 9k;7k;5k đều là số lẻ =>(9k+7k+5k) là số lẻ ( tổng 3 số lẻ là một số lẻ)
Hiệu của một số chẵn trừ đi một số lẻ là một số lẻ => hiệu trên không chia hết cho 2
2) 2001;2003 là số lẻ nên 2001n;2003n là số lẻ nên tổng 2 số lẻ 2001n+2003n sẽ là số chẵn
Mà 2002n là số chẵn nên tổng trên là môt số chẵn => chia hết cho 2
(10k+8k+6k)-(9k+7k+5k)=
=243k-213k=(24-21)3k-3k=3
Mà 3\(⋮̸2\)
⇒Hiệu trên ko chia hết cho 2 (kϵn*)