K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

1. Đặt \(\left\{{}\begin{matrix}u=x\\dv=\dfrac{dx}{sin^2x}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cotx\end{matrix}\right.\)

Do đó I= \(-x.cotx+\int cotxdx\)= \(-xcotx+ln\left|sinx\right|\)

5 tháng 12 2017

2. Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=\dfrac{dx}{e^x}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-e^{-x}\end{matrix}\right.\)

Do đó I= \(-\left(x+1\right)e^{-x}+\int e^{-x}dx\)=\(-\left(x+1\right)e^{-x}-e^{-x}\)

=\(-\left(x+2\right)e^{-x}\)

GV
4 tháng 5 2017

a) \(\int\left(x+\ln x\right)x^2\text{d}x=\int x^3\text{d}x+\int x^2\ln x\text{dx}\)

\(=\dfrac{x^4}{4}+\int x^2\ln x\text{dx}+C\) (*)

Để tính: \(\int x^2\ln x\text{dx}\) ta sử dụng công thức tính tích phân từng phần như sau:

Đặt \(\left\{{}\begin{matrix}u=\ln x\\v'=x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u'=\dfrac{1}{x}\\v=\dfrac{1}{3}x^3\end{matrix}\right.\)

Suy ra:

\(\int x^2\ln x\text{dx}=\dfrac{1}{3}x^3\ln x-\dfrac{1}{3}\int x^2\text{dx}\)

\(=\dfrac{1}{3}x^3\ln x-\dfrac{1}{3}.\dfrac{1}{3}x^3\)

Thay vào (*) ta tính được nguyên hàm của hàm số đã cho bằng:

(*) \(=\dfrac{1}{3}x^3-\dfrac{1}{3}x^3\ln x+\dfrac{1}{9}x^3+C\)

\(=\dfrac{4}{9}x^3-\dfrac{1}{3}x^3\ln x+C\)

GV
4 tháng 5 2017

b) Đặt \(\left\{{}\begin{matrix}u=x+\sin^2x\\v'=\sin x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u'=1+2\sin x.\cos x\\v=-\cos x\end{matrix}\right.\)

Ta có:

\(\int\left(x+\sin^2x\right)\sin x\text{dx}=-\left(x+\sin^2x\right)\cos x+\int\left(1+2\sin x\cos^2x\right)\text{dx}\)

\(=-\left(x+\sin^2x\right)\cos x+\int\cos x\text{dx}+2\int\sin x.\cos^2x\text{dx}\)

\(=-\left(x+\sin^2x\right)\cos x+\sin x-2\int\cos^2x.d\left(\cos x\right)\)

\(=-\left(x+\sin^2x\right)\cos x+\sin x-2\dfrac{\cos^3x}{3}+C\)

1 tháng 4 2017

a) Áp dụng phương pháp tìm nguyên hàm từng phần:

Đặt u= ln(1+x)

dv= xdx

=> ,

Ta có: ∫xln(1+x)dx =

=

b) Cách 1: Tìm nguyên hàm từng phần hai lần:

Đặt u= (x2+2x -1) và dv=exdx

Suy ra du = (2x+2)dx, v = ex

. Khi đó:

∫(x2+2x - 1)exdx = (x2+2x - 1)exdx - ∫(2x+2)exdx

Đặt : u=2x+2; dv=exdx

=> du = 2dx ;v=ex

Khi đó:∫(2x+2)exdx = (2x+2)ex - 2∫exdx = ex(2x+2) – 2ex+C

Vậy

∫(x2+2x+1)exdx = ex(x2-1) + C

Cách 2: HD: Ta tìm ∫(x2-1)exdx. Đặt u = x2-1 và dv=exdx.

Đáp số : ex(x2-1) + C

c) Đáp số:

HD: Đặt u=x ; dv = sin(2x+1)dx

d) Đáp số : (1-x)sinx - cosx +C.

HD: Đặt u = 1 - x ;dv = cosxdx

11 tháng 4 2017

Giải bài 4 trang 126 sgk Giải tích 12 | Để học tốt Toán 12

GV
4 tháng 5 2017

a) \(\sin^4x=\left(\sin^2x\right)^2=\left(\dfrac{1-\cos2x}{2}\right)^2\)

\(=\dfrac{1}{4}\left(1-2\cos2x+\cos^22x\right)\)

\(=\dfrac{1}{4}\left(1-2.\cos2x+\dfrac{1+\cos4x}{2}\right)\)

\(=\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\)

Vậy:

\(\int\sin^4x\text{dx}=\int\left(\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\right)\text{dx}\)

\(=\dfrac{3}{8}x-\dfrac{1}{4}\sin2x+\dfrac{1}{32}\sin4x+C\)