Cho hàm số y = (2m - 3)x - 1 với (m#1/3) (d)
a) Tìm m để hs đồng biến
b) tìm m để (d) đi qua E ( -2; -3) . Vẽ ĐTHS với m vừa tìm được
c) Tìm m sao cho khoảng cách từ gốc toạ độ đến (d) = \(\dfrac{1}{\sqrt{5}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : tg60=m-1
\({\sqrt{3}=m-1} \) \(->m=\sqrt{3} +1\)
\(tan120=3-2m <=> -\sqrt{3}=3-2m \)
m=\(\frac{3+\sqrt{3}}{2}\)
Bài 1:
a. $y=(m-2m+3m-2m+3)x-2=3x-2$
Vì $3\neq 0$ nên hàm này là hàm bậc nhất với mọi $m\in\mathbb{R}$
b. Vì $3>0$ nên hàm này là hàm đồng biến với mọi $m\in\mathbb{R}$
Bài 2:
Đồ thị xanh lá cây: $y=-x+3$
Đồ thị xanh nước biển: $y=2x+1$
a: Để hàm số là hàm số bậc nhất thì 2m-3<>0
hay m<>3/2
b: Để hàm số đồng biến thì 2m-3>0
hay m>3/2
Để hàm số nghịch biến thì 2m-3<0
hay m<3/2
1: Để hai đường thẳng song song thì 2m-1=-5
hay m=-2
Vì hai đồ thị cắt nhau tại một điểm trên trục tung nên n=-4
=>m=-2
\(\Leftrightarrow\left(m+1\right)x\ge-2m-3\)
- Với \(m=-1\) thỏa mãn
- Với \(m>-1\Rightarrow x\ge\dfrac{-2m-3}{m+1}\)
\(\Rightarrow\dfrac{-2m-3}{m+1}\le-3\) \(\Leftrightarrow\dfrac{2m+3}{m+1}-3\ge0\Leftrightarrow\dfrac{-m}{m+1}\ge0\)
\(\Rightarrow-1< m\le0\Rightarrow m=0\)
- Với \(m< -1\Rightarrow x\le\dfrac{-2m-3}{m+1}\Rightarrow\dfrac{-2m-3}{m+1}\ge-1\)
\(\Rightarrow\dfrac{2m+3}{m+1}-1\le0\Leftrightarrow\dfrac{m+2}{m+1}\le0\)
\(\Rightarrow-2\le m< -1\Rightarrow m=-2\)
Vậy \(m=\left\{-2;-1;0\right\}\)
Để
thì \(\hept{\begin{cases}m-3=-2\\2m-1\ne5\end{cases}}\Leftrightarrow\hept{\begin{cases}m=1\\m\ne3\end{cases}}\)
Vậy để đồ thị hàm số y=(m-3).x+2m-1 song song với đồ thị hàm số y=-2x+5 thì m=1
a: Để hàm số đồng biến thì 2m-3>0
hay m>3/2
b: Thay x=-2 và y=-3 vào y=(2m-3)x-1, ta được:
-2(2m-3)-1=-3
=>-2(2m-1)=-2
=>2m-1=1
hay m=1