K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

Đặt \(\left(a^2;b^2;c^2\right)\rightarrow\left(x;y;z\right)\)thì bài toán trở thành:

Cho \(x;y;z\in\left[0;1\right]\)và không đồng thời bằng 0.Cm:\(\dfrac{x^2y+y^2z+z^2x+3}{x^{1006}+y^{1006}+z^{1006}}\ge2\)

Ta có: \(x^{1006}\le x^2\)\(\Leftrightarrow x^2\left(1-x^{1004}\right)\ge0\)(đúng vì \(0\le x\le1\))

Tương tự ta có: \(x^{1006}+y^{1006}+z^{1006}\le x^2+y^2+z^2\)

( Dấu = xảy ra ở đây là cả 3 số bằng 1 hoặc 2 số bằng 1, 1 số bằng 0)

Lại có:\(x^2y\ge x^2y^2\Leftrightarrow x^2y\left(1-y\right)\ge0\left(true\right)\)

\(\Rightarrow x^2y+y^2z+z^2x\ge x^2y^2+y^2z^2+z^2x^2\)

( Dấu = xảy ra ở đây là cả 3 số bằng 1, hoặc 2 số bằng 1,1 số bằng 0 ;hoặc chỉ cần 1 số bằng 0,1 số bằng 1)

Giờ ta cần chứng minh:

\(\dfrac{x^2y^2+y^2z^2+z^2x^2+3}{x^2+y^2+z^2}\ge2\Leftrightarrow\sum\left(x^2-1\right)\left(y^2-1\right)\ge0\)(đúng)

(Dấu = xảy ra ở đây là chỉ cần 2 số bằng 1)

Kết hợp cả 3 TH dấu = ta được:BĐT xảy ra khi cả 3 số bằng 1 hoặc 2 số bằng 1; 1 số bằng 0

Đó là x;y;z.Khi đổi về a;b;c thì còn hoán vị cả \(-1;1\)

P/s: rắc rối mỗi cái điểm rơi :V

11 tháng 4 2017

Bài 1:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

hay \(\frac{a}{b}=\frac{a+b+c}{b+c+d}\)

\(\frac{b}{c}=\frac{a+b+c}{b+c+d}\)

\(\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

Nhân vế theo vế của 3 đẳng thức trên ta có:

\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

mà \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\left(đpcm\right)\)

11 tháng 4 2017

Bài 2: Không làm được, thông cảm. Gợi ý: Áp dụng chia tỉ lệ

14 tháng 2 2016

de

15 tháng 2 2016

dễ thì giải dùm cái

AH
Akai Haruma
Giáo viên
8 tháng 1 2017

Lời giải:

Từ điều kiện đề bài ta có:

\(\frac{c-1}{c}=1-\frac{1}{c}=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{1-c}{ab}\) \(\Leftrightarrow (c-1)\left(\frac{1}{c}+\frac{1}{ab}\right)=0\)

\(\Leftrightarrow (c-1)\left(\frac{1}{1-a-b}+\frac{1}{ab}\right)=\frac{(a-1)(b-1)(c-1)}{abc}=0\)

Do đó tồn tại ít nhất một trong các số đã cho có giá trị bằng $1$

a: Các điểm B;D thuộc đồ thị, còn A,C không thuộc đồ thị

b: Thay y=-1 vào y=1/3x, ta được:

1/3x=-1

hay x=-3

Vậy: E(-3;-1)

Thay x=-4 vào y=1/3x, ta được:

y=-1/3x4=-4/3

Vây: F(-4;-4/3)

22 tháng 2 2022

thiếu vẽ đồ thị anh ơi

undefined

Cái câu vẽ đồ thị thì bạn chỉ cần lập bảng giá trị rồi biễu diễn trên hệ trục tọa độ Oxy là được

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

Vì $M\in (y=\frac{a}{x})$ nên:

$y_M=\frac{a}{x_M}\Rightarrow a=x_M.y_M=6.6=36$

Vậy hàm số có công thức $y=\frac{36}{x}(*)$

Giờ bạn thay tung độ (y) và hoành độ (x) của từng điểm vô xem có đúng với $(*)$ không thì thu được không có điểm nào thuộc ĐTHS.