\(Cho:\dfrac{P}{Q}=\dfrac{R}{S}CTR:N\text{ếu}\dfrac{P}{Q}=\dfrac{R}{S}th\text{ì}\dfrac{Q+P}{Q}=\dfrac{R+S}{S}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\dfrac{P}{Q}=\dfrac{R}{S}\Rightarrow PS=QR\)
\(\Leftrightarrow PS+QS=QR+QS\)
\(\Leftrightarrow S\left(P+Q\right)=Q\left(R+S\right)\)
điều kiện Q,s khác 0 => chia hau vế cho QS
\(\Leftrightarrow\dfrac{S\left(P+Q\right)}{QS}=\dfrac{Q\left(R+S\right)}{QS}\Leftrightarrow\dfrac{\left(P+Q\right)}{Q}=\dfrac{\left(R+S\right)}{S}\) đpcm
Bài 1.
a) Do hai phân thức bằng nhau , ta có :
( x +2)P( x2 - 22) = ( x - 1)Q( x -2)
=( x + 2)P( x - 2)( x + 2) = ( x - 1)Q( x - 2)
Suy ra : P = x - 1 ; Q = ( x + 2)2
b) Do hai phân thức bằng nhau , ta có :
( x + 2)P(x2 - 2x + 1) = ( x - 2)Q( x2 - 1)
= ( x + 2)P( x - 1)2 = ( x - 2)Q( x - 1)( x + 1)
Suy ra : P = ( x - 2)( x + 1) = x2 - x - 2
Q = ( x + 2)( x - 1) = x2 + x + 2
Bài 2. a) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)
Xét : ( P + Q)S= PS + QS = QR + QS = Q( R + S)
-> \(\dfrac{P+Q}{Q}=\dfrac{R+S}{S}\)
b) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)
Xét : ( S - R)P = PS - PR = QR - PR = R( Q - P)
-> \(\dfrac{R-S}{R}=\dfrac{Q-P}{P}\)
- > \(\dfrac{R}{R-S}=\dfrac{P}{Q-P}\)
\(R=\frac{1}{2.32}+\frac{1}{3.33}+......+\frac{1}{1976.2006}\Rightarrow30R=\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1976}-\frac{1}{32}-\frac{1}{33}-....-\frac{1}{2006}=\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{31}-\frac{1}{1977}-\frac{1}{1978}-....-\frac{1}{2006};S=\frac{1}{2.1977}+\frac{1}{3.1978}+....+\frac{1}{31.2006}=\Rightarrow1975S=\frac{1}{2}+\frac{1}{3}+....+\frac{1}{31}-\frac{1}{1977}-\frac{1}{1978}-....-\frac{1}{2006}=R\Rightarrow30R=1975S\Rightarrow R=\frac{1975}{30}S=\frac{395}{6}\Rightarrow\frac{R}{S}=\frac{395}{6}\)
Ta có :
\(\dfrac{31}{2}.\dfrac{32}{2}.\dfrac{33}{2}.....\dfrac{60}{2}=31.32.33.....\dfrac{60}{2^{30}}\)
(31.32.33....60)(1.2.3....30)/230(1.2.3....30)
= (1.3.5.....59)(2.4.6.....60 )/( 2.4.6....60 ) = 1.3.5....59
\(\Rightarrow P=Q\)
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)
b, Ta có: \(a^2=bc\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)
\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrowđpcm\)
a) $\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1$
(tính chất dãy tỉ số bằng nhau)
$\dfrac{a}{b}=1=>a=b$
$\dfrac{b}{c}=1=>b=c$
$\dfrac{c}{a}=1=>c=a$
Vậy a = b = c.
b) Ta có : $a^2=bc=>\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}$(tính chất dãy tỉ số bằng nhau)
$=>\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}$
$=>\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}$
Ta có: \(\dfrac{9}{11}=\dfrac{36}{44};\dfrac{5}{4}=\dfrac{55}{44}\)
Khi đó giá trị 1 phần là: \(38:\left(55-36\right)=2\)
\(\Rightarrow\) Tử số: \(36.2=72\)
Mẫu: \(44.2=88\)
Vậy \(\dfrac{a}{b}=\dfrac{72}{88}.\)
a)S=\(\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)
=\(\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right):\dfrac{2x-6}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
\(\left(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right):\dfrac{2x-6}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
=\(\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
=\(\dfrac{6\left(2x-6\right)x\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)\left(2x-6\right)}+\dfrac{x}{6-x}\)
=\(\dfrac{6}{x-6}+\dfrac{x}{6-x}\)
=\(\dfrac{6}{x-6}-\dfrac{x}{x-6}=\dfrac{6-x}{x-6}=-1\)
b ) S khi rút gọn=-1 => mọi giá trị của x đều thỏa mãn S=-1
Ta có:
\(\dfrac{P}{Q}=\dfrac{R}{S}\Leftrightarrow1+\dfrac{P}{Q}=1+\dfrac{R}{S}\Leftrightarrow\dfrac{Q+P}{Q}=\dfrac{R+S}{S}\)
=> ĐPCM