Cho A= (5m mũ2 -8m mũ2-9m mũ2) (-n mũ3+4n mũ3) Với giá trị nào của m và n thì A lớn hơn hoạc =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\left(x^3-1\right)\left(x^2+1\right)=0\)
\(< =>\left\{{}\begin{matrix}x^3-1=0\\x^2+1=0\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x^3=1\\x^2=-1\left(kxđ\right)\end{matrix}\right.\)
<=>x=1
vậy ...
\(2.\left(2x+6\right)\left(3x^2-12\right)=0\)
\(< =>\left\{{}\begin{matrix}2x+6=0\\3x^2-12=0\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}2x=-6\\3x^2=12\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x=-3\\x^2=4\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
vậy ...
\(x^3-3x^2=0\)
\(\Leftrightarrow x^2\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
khỉ nghĩ như này..
x3-3x2=0
(=)x2 (x-3)=0
(=)x2=0,hoac x-3=0
(=)x=3
\(A=\left(5m^2-8m^2-9m^2\right)\left(-n^3+4n^3\right)=-12m^2.3n^3=-36m^2n^3\)
Để A\(\ge0\) thì \(m^2n^3\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\in Q\\n\le0\end{matrix}\right.\)
A=(5m2−8m2−9m2)(−n3+4n3)=−12m2.3n3=−36n5A=(5m2−8m2−9m2)(−n3+4n3)=−12m2.3n3=−36n5
Để A≥0≥0 thì n5≤0⇔n≤0