K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

Định lý Fermat

4 tháng 12 2017

Có định lí Fermat là không tồn tại bộ ba số nguyên x, y, z nào thỏa mãn \(x^n+y^n=z^n\)(với n>2)

Xét Ta thấy 3>2

Nên không tồn tại x,y,z 

12 tháng 3 2018

Ta có : \(x^2+2012x+2011^{2011}-1=0\)

\(\Leftrightarrow x^2+2012x+1006^2=2011^{2011}+1+1006^2\)

\(\Rightarrow\left(x+1006\right)^2=2011^{2011}+1+1006^2\)

Giả sử x là một số nguyên thì VT là một số chính phương.

Khi đó VP cũng là số chính phương.

Lại có 20112011 có tận cùng là chữ số 1, 10062 có tận cùng là chữ số 6 nên VP có tận cùng là chữ số 8.

Lại có không một số chính phương nào có tận cùng là chữ số 8 hay VP không là số chính phương.

Vậy giả sử sai hay không tồn tại số nguyên x thỏa mãn phương trình trên. 

24 tháng 12 2017

Mình bổ sung đề nha:

CMR : nếu x3 + y3 + z3 = 3xyz thì x = y = z hoặc x + y + z = 0

Giải:

Ta có: x3 + y3 + z3 = 3xyz

=> x3 + y3 + z3 - 3xyz = 0

=> (x3 + y3) + z3 - 3xyz = 0

=> (x + y)3 - 3xy(x + y) + z3 - 3xyz = 0

=> [(x + y)3 + z3 ]- [3xy(x + y) + 3xyz] = 0

=> (x + y + z)[(x+y)2 - (x+y)z + z2 ] - 3xy(x+y+z) = 0

=> (x + y +z)(x2 + y2 +z2 - xy - yz - zx) = 0

=>\(\left[{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{matrix}\right.\)

Xét x2 + y2 + z2 - xy - yz - zx = 0, nhân 2 vào 2 vế ta có:

2x2 + 2y2 +2z2 - 2xy - 2yz - 2zx = 0

=> (x2 -2xy+ y2 )+(y2 - 2yz + z2) +(z2 - 2zx + x2) = 0

=> (x-y)2 + (y-z)2 + (z-x)2 = 0

Vì (x - y)2\(\ge\) 0 với mọi x, y

(y-z)2 \(\ge\) 0 với mọi y,z

(z-x)2 \(\ge\) 0 với mọi z,x

Vậy để (x-y)2 + (y-z)2 + (z-x)2 = 0

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\Rightarrow x=y=z\)

Vậy ta có đpcm

20 tháng 7 2018

mình ghi lộn 1 tí đề bài số 5 là CMR: xy chia hết cho 12

20 tháng 7 2018

1. a) Cho \(x^2-25=0\) 

\(\Rightarrow\left(x-5\right)\left(x+5\right)=0\) 

\(\Rightarrow\) x = 5 hoặc x = -5 

Vậy \(x=\pm5\)là nghiệm của đa thức đã cho.

b) Cho \(x^2+8x-9=0\)

\(\Rightarrow x^2-x+9x-9=0\)

\(\Rightarrow x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Rightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Rightarrow x=-9\) hoặc \(x=1\)

Vậy \(x=-9\) và \(x=1\) là nhiệm của đa thức đã cho.

12 tháng 4 2015

Giải nhanh và chi tiết giúp mình nhé. 22/4 là mình thi HSG rồi

 

14 tháng 10 2019

Câu hỏi của Mạnh Khuất - Toán lớp 7 - Học toán với OnlineMath