tính:A=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2000\sqrt{1999}+1999\sqrt{2000}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = \(\frac{1-\sqrt{2}}{1-2}\)+\(\frac{\sqrt{2}-\sqrt{3}}{2-3}\)+\(\frac{\sqrt{3}-\sqrt{4}}{3-4}\)+...+\(\frac{\sqrt{1999}-\sqrt{2000}}{1999-2000}\) (liên hợp)
= -1 +\(\sqrt{2}\) -\(\sqrt{2}\) +\(\sqrt{3}\) -\(\sqrt{3}\) +\(\sqrt{4}\) -... -\(\sqrt{1999}\) +\(\sqrt{2000}\)
= \(\sqrt{2000}\)-1
Với a , b , c là số hữu tỉ t/m a = b + c ta luôn có \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\in Q\)
Thật vậy : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-2\left(\frac{1}{bc}-\frac{1}{ac}-\frac{1}{ab}\right)}\)
\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-\frac{2.abc\left(a-b-c\right)}{a^2b^2c^2}}\)(quy đồng lên )
\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\left(\text{do a-b-c=0}\right)\)
\(=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\in Q\)
Áp dụng ta được \(A=\left|\frac{1}{3}-\frac{1}{2}-1\right|+\left|\frac{1}{4}-\frac{1}{3}-1\right|+...+\left|\frac{1}{2000}-\frac{1}{1999}-1\right|\)là số hữu tỉ
Vậy A là số hữu tỉ
1) Có nhận xét sau:
\(\frac{1}{a\sqrt{a+1}+\left(a+1\right)\sqrt{a}}=\frac{1}{\sqrt{a^2+a}\left(\sqrt{a}+\sqrt{a+1}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a^2+a}}\)
\(=\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a+1}}.\)Do đó biểu thức có giá trị bằng: \(\frac{1}{1}-\frac{1}{\sqrt{2}}+..-\frac{1}{\sqrt{1999}}=1-\frac{1}{\sqrt{1999}}.\)
2) Có nhận xét sau:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\sqrt{a+1}-\sqrt{a}.\) Thay vào biểu thức ta được biểu thức
có giá trị bằng: \(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{1999}-\sqrt{1998}=\sqrt{1999}-1.\)
Xét : \(\left(\frac{1}{k-1}-\frac{1}{k}+1\right)^2=\frac{1}{k^2}+\frac{1}{\left(k-1\right)^2}+1+2\left(-\frac{1}{k\left(k-1\right)}-\frac{1}{k}+\frac{1}{k-1}\right)\)
\(=\frac{1}{k^2}+\frac{1}{\left(k-1\right)^2}+1\)
\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=\left|\frac{1}{k-1}-\frac{1}{k}+1\right|\)với k thuộc N* , k > 1
Áp dụng : \(\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{1999^2}+\frac{1}{2000^2}}\)
\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{1999}-\frac{1}{2000}\right)\)
\(=1998+\frac{1}{2}+-\frac{1}{2000}\)
ĐK:1\(\ge\)x\(\ge\)-1
+) Với x1=x2=...=x2000
Từ (1) suy ra x1=x2=...=x2000 =1/2000 (thay vào (2) thỏa mãn)
+) Với x1<x2<...<x2000 ( trường hợp còn lại chắc cũng giống vậy)
Từ (1) suy ra:
VT>2000.\(\sqrt{1+x_1}\)<=> \(\sqrt{\frac{2001}{2000}}\)>\(\sqrt{1+x_1}\)<=>x1<1/2000(1)
Từ (2) suy ra:
VT<2000.\(\sqrt{1+x_1}\)<=>\(\sqrt{\frac{1999}{2000}}\)<\(\sqrt{1-x_1}\) <=>x1>1/2000(2)
Từ (1) và (2) cho thấy x1<x2<...<x2000 không xảy ra
Vậy: Hệ phương trình có nghiệm duy nhất x1=x2=...=x2000 =1/2000
Cảm ơn nhiều nha Lê Hồ Trọng Tín , cách giải rất hay . Mk có cách này, cũng gần tương tự(p/s nhà mk đã đủ gạch đá r nên k dám nhận nữa đâu ( v ̄▽ ̄) )
Điều kiện \(-1\le x_n\le1\) với mọi \(n=1,2,3,...,2000\)
Khi đó :
\( \left(1\right)\Leftrightarrow2000.2001=\left(\sqrt{1+x_1}+\sqrt{1+x_2}+...+\sqrt{1+x_{2000}}\right)^2\)
\(\le\left(1+1+...+1\right)\left(1+x_1+1+x_2+...+1+x_{2000}\right)\)( bất đẳng thức bunyakovsky)
\(=2000\left(2000+x_1+x_2+...+x_{2000}\right)\)
\(\Leftrightarrow1\le x_1+x_2+...+x_{2000}\)
Khi đó :
\(\left(2\right)\Leftrightarrow2000.1999\le\left(1+1+...+1\right)\left(1+1+...+1-x_1-x_2-...-x_{2000}\right)\)
\(\Leftrightarrow x_1+x_2+...+x_{2000}\le1\)
Do đó \(\hept{\begin{cases}1+x_1=1+x_2=...=1+x_{2000}\\1-x_1=1-x_2=...=1-x_{2000}\\x_1+x_2+...+x_{2000}=1\end{cases}\Leftrightarrow_{ }}x_1=x_2=...=x_{2000}=\frac{1}{2000}.\)
Bạn áp dụng \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)với n = 1, 2 , 3 , ... , 1999
Đặt 2000 = a thì ta có
A = \(\sqrt{1+\left(a-1\right)^2+\frac{\left(a-1\right)^2}{a^2}}+\frac{a-1}{a}\)
\(=\sqrt{\frac{a^4-2a^3+3a^2-2a+1}{a^2}}+\frac{a-1}{a}\)
\(=\frac{a^2-a+1}{a}+\frac{a-1}{a}=a=2000\)
\(\frac{1}{n\sqrt{n+1}+\sqrt{n}\left(n+1\right)}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)
sau đó tách ra là ok