K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:

\(AF\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

9 tháng 9 2021

3.

\(F=\dfrac{k.\left|q_1.q_2\right|}{r^2}=\dfrac{9.10^9.\left|9.10^{-18}\right|}{0,1^2}=8,1.10^{-6}N\)

9 tháng 9 2021

1.

\(F=\dfrac{k.\left|q_1.q_2\right|}{r^2}=\dfrac{9.10^9.\left|5.10^8.\left(-1,6.10^{-19}\right).5.10^8.\left(-1,6.10^{-19}\right)\right|}{0,02^2}=1,44.10^{-7}N\)

11 tháng 12 2021

Câu 5:

a: Xét tứ giác AHMK có 

\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)

Do đó: AHMK là hình chữ nhật

28 tháng 12 2016

Ta có:102016-1=100...0-1 (có 2016 số 0)=99..9(có 2015 chữ số 9)

Tổng chữ số của số trên là 9x2015 \(⋮9\)

nên 102016-1\(⋮9\)

31 tháng 10 2021

a: \(\widehat{B}+\widehat{C}=90^0\)

c: Góc kề bù với C bằng tổng của góc A cộng góc B

Giải:

O x y z t m n  

a) Vì +) Oy;Oz cùng ∈ 1 nửa mặt phẳng bờ chứa tia Ox

        +) \(x\widehat{O}y< x\widehat{O}z\left(30^o< 150^o\right)\) 

⇒Oy nằm giữa Ox và Oz

\(\Rightarrow x\widehat{O}y+y\widehat{O}z=x\widehat{O}z\) 

      \(30^o+y\widehat{O}z=150^o\) 

               \(y\widehat{O}z=150^o-30^o\) 

               \(y\widehat{O}z=120^o\) 

b) Vì Ot là tia p/g của \(y\widehat{O}z\) 

\(\Rightarrow y\widehat{O}t=t\widehat{O}z=\dfrac{y\widehat{O}z}{2}=\dfrac{120^o}{2}=60^o\) 

c) Vì Om là tia đối của Oy

\(\Rightarrow y\widehat{O}m=180^o\) 

\(\Rightarrow x\widehat{O}y+y\widehat{O}m=180^o\) (2 góc kề bù)

      \(30^o+y\widehat{O}m=180^o\) 

               \(y\widehat{O}m=180^o-30^o\) 

               \(y\widehat{O}m=150^o\)

Vì On là tia đối của Ox

\(\Rightarrow x\widehat{O}n=180^o\) 

\(\Rightarrow x\widehat{O}m+m\widehat{O}n=180^o\) (2 góc kề bù)

     \(150^o+m\widehat{O}n=180^o\) 

                \(m\widehat{O}n=180^o-150^o\) 

                \(m\widehat{O}n=30^o\) 

\(\Rightarrow x\widehat{O}z+z\widehat{O}n=180^o\) (2 góc kề bù)

    \(150^o+z\widehat{O}n=180^o\) 

               \(z\widehat{O}n=180^o-150^o\) 

               \(z\widehat{O}n=30^o\) 

\(\Rightarrow z\widehat{O}n+n\widehat{O}m=z\widehat{O}m\) 

         \(30^o+30^o=z\widehat{O}m\) 

\(\Rightarrow z\widehat{O}m=60^o\) 

Vì +) \(z\widehat{O}n+n\widehat{O}m=z\widehat{O}m\) 

     +) \(z\widehat{O}n=n\widehat{O}m=60^o\) 

⇒On là tia p/g của \(z\widehat{O}m\) 

Chúc bạn học tốt!

31 tháng 3 2022

Tham khảo:

Ta có các phân số 1/11 ; 1/12 ; 1/13 ; 1/14 ; 1/15 ; 1/16 ; 1/17 ; 1/18 ; 1/19 đều lớn hơn 1/20

Do đó : 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20 > 1/20 + 1/20 + ;...+ 1/20 ( có 10 phân số 1/20 )

1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1 /16 + 1/17 + 1/18 + 1/19 + 1/20 > 10/20

1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1 /16 + 1/17 + 1/18 + 1/19 + 1/20 > 1/2

Vậy : S > 1/2

31 tháng 3 2022

Ta có: \(\dfrac{1}{2}=\dfrac{10}{20}=\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\) ( Có 10 số \(\dfrac{1}{20}\) )

Mà \(\dfrac{1}{20}< \dfrac{1}{19}:\dfrac{1}{20}< \dfrac{1}{18}:...:\dfrac{1}{20}< \dfrac{1}{11}\)

\(\Rightarrow\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}< \dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{11}\)

\(\Rightarrow A=B\)

24 tháng 11 2021

\(2b,=\left(2x^3-4x^2-4x^2+8x-2x+4-9\right):\left(2x-4\right)\\ =\left[\left(2x-4\right)\left(x^2-2x-2\right)-9\right]:\left(2x-4\right)\\ =x^2-2x-2\left(\text{ dư -9}\right)\)